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Abstract. The study of the gauged linear sigma model in physics has led to

a prediction that the fundamental groupoid of a space of physically meaning-

ful parameters (the FI parameters) acts on the derived categories of certain

Calabi–Yau varieties. These varieties occur as GIT quotients of a linear space

by a torus action. The auto-equivalences of the derived category corresponding

to some “large radius” loops in the parameter space are well understood and

are so-called “window shifts”. These arise naturally from the representation

theory and we can try to use them to construct the conjectural representation.

This has been carried out successfully for certain toric examples by Donovan

and Segal in [18] and for all so-called “quasi-symmetric” examples by Halpern-

Leistner and Sam in [24]. In both cases, the authors rely on the existence of

special configurations of line bundles called “magic windows” (introduced in

[18]) to prove relations between the various window shifts.

In this thesis, we move beyond these examples and construct a representa-

tion of the fundamental groupoid on two basepoints of an open subset of the

FI parameter space whenever this space is 2-dimensional. This relies on a gen-

eralisation of windows called “fractional windows” which were introduced by

Halpern-Leistner and Shipman in [25]. Moreover, we describe several examples

where we can extend this representation over the whole parameter space.

When the dimension of this space becomes larger, constructing the repre-

sentation becomes more complicated. Nonetheless, we construct such a rep-

resentation in a new example whose parameter space is 3-dimensional using

the Lefschetz hyperplane theorem. We also discuss an approach to the same

problem using finite covers of the parameter space (based on [18]). Finally, we

recall a conjecture of Aspinwall, Plesser and Wang [4] about how to construct

a representation more generally. This leads us to conjecture a relationship be-

tween some intersection multiplicities and semi-orthogonal decompositions of

derived categories and we prove that this relationship is at least well-defined.

1. Introduction

Start with a representation TL ⟳ Cn of a connected torus TL over C. The

weights of this representation β1, . . . , βn lie in L∨, where L is the lattice of cochar-

acters of TL. A torus representation can be viewed geometrically through the as-

sociated toric variation of GIT (VGIT). From this perspective, a choice of β ∈ L∨

determines an equivariant polarisation O(β) on Cn and we can form the associated

GIT quotient Xβ . For us, Xβ is always a smooth toric stack (see Definition 3.20)

and not a singular toric variety.

The real span of the space of parameters for the VGIT is therefore L∨R and there

is a natural fan in L∨R, called the secondary fan (see Definition 3.13). The cones in

this fan naturally index the possible GIT quotients for our TL-action in the sense

that any two β ∈ L∨ lying in the interior of a given cone correspond to the same

GIT quotient Xβ . In particular, if β lies in a chamber C – that is, the interior of a

maximal cone of this fan – we denote this GIT quotient by XC and this is a smooth
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DM stack. We call XC a phase of the VGIT and crossing a wall in the secondary

fan corresponds to a birational modification of XC .

We are particularly interested in the case when our representation is Calabi–

Yau – that is, when the sum of the weights is 0 – and if this holds, then Xβ is

Calabi–Yau for any β in the sense that KXβ ≅ OXβ . In this case, the secondary fan

can be enhanced to a stacky fan (see Definition 3.22) called the stacky secondary

fan (see Definition 3.37). Any stacky fan has an associated toric stack and the one

associated to the stacky secondary fan is called the secondary stack [16]. We denote

this by F. Then F is a proper (see Remark 3.40) toric stack compactifying TL∨ .

Moreover, the chambers C of the secondary fan naturally correspond to torus fixed

points in F, which we therefore denote pC . So the points pC in F – which physicists

refer to as “large radius limits” – naturally index the phases of our VGIT.

The reason for our interest in the Calabi–Yau case, is that, in general, birational

modifications of Calabi–Yaus are expected to induce equivalences between their

derived categories and, in particular, all the phases of a toric Calabi–Yau VGIT

should be derived equivalent. In fact, this has been proved, using the theory of

windows, in [6, 22]. However such derived equivalences are not unique and so we

would like to understand the global story of how they all fit together.

A priori it seems difficult to guess what relations one expects between these

equivalences. Yet physicists came up with a remarkable prediction, which we shall

now explain. They first tell us to complexify the space of VGIT parameters. We do

this by associating to our VGIT a particular type of 2-dimensional quantum field

theory, called a gauged linear sigma model (GLSM). Here the “gauging” refers to the

TL action and the “linear” to the fact that TL acts on the linear space Cn. Physicists

impose the Calabi–Yau condition to ensure that this GLSM is not anomalous. Our

VGIT parameters β ∈ L∨R give parameters in this theory. These should be thought

of as Kähler parameters – indeed the polarisation O(β) descends to one on Xβ .

There are other “Kähler-type” parameters in this theory, analogous to B-fields on

a Calabi–Yau variety. Together these parameters form a complex orbifold called the

Fayet–Iliopoulos parameter space (FIPS), which, to first approximation, is roughly

TL∨ , or F if we include limits points. This parameter space is a version of the

“stringy Kähler moduli space” of a Calabi–Yau variety.

For a general reductive gauge group, it is hard to make precise mathematical

sense of the FIPS, though it should be closely related to the space of Bridgeland

stability conditions [9] on the derived category Db(XC) of some phase. However,

when the gauge group is a connected torus, we can use toric mirror symmetry to

identify the FIPS with the “complex parameter space” of the mirror GLSM. The

“complex parameters” in a GLSM parametrise “superpotentials” – that is, a cer-

tain class of Laurent polynomials (see Definition 3.1) – which don’t have critical

points, up to reparamatrisation. The exact notion of this “discriminant locus”,

where the superpotentials develop critical points, is given by zeros of the princi-

pal A-determinant EA (see Definition 3.6) introduced by Gelfand, Kapranov and
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Zelevinsky [20]. This is exactly the degeneracy locus of the “GKZ system” of dif-

ferential equations ([20], Ch. 10, Remark 1.8). As such, the FIPS can be identified

with the complement of the discriminant locus inside this space of superpotentials

(see Definition 3.9). As F is a compactification of this space of superpotentials, it

follows that the FIPS is an open substack inside F and the walls of the secondary

fan are capturing the asymptotic behaviour of the discriminant locus near the toric

boundary in F.

So we have a family of GLSMs whose Kähler structure is parametrised by the

FIPS. In these physical theories there are dynamical objects known as “D-branes”

which form a category. In certain regions of the FIPS, these D-brane categories can

be understood geometrically as follows. Near each large radius limit pC in F, there

is an open subset VC ⊂ FIPS called the “large radius region” near pC (see §5.1).

When the FI parameters lie inside VC , the D-brane category can be identified with

the derived category Db(XC). Unfortunately, for other FI parameters it is harder to

understand this category geometrically. Yet, starting with a D-brane in a particular

phase, physicists claim they can canonically transport it to different phases as

we vary the FI parameters. However mathematicians have yet to make “D-brane

transport”, or indeed the GLSM itself, rigorous. Nonetheless, the existence of this

“local system of categories” over the FIPS is a testable mathematical statement.

We want to make a precise mathematical statement out of this heuristic picture

coming from physics with the fundamental groupoid acting on the derived categories

of all of the phases. To this end, we need to pick a basepoint qC near each large

limit pC , since pC itself usually lies in the discriminant. In §5.1, we explain how

to makes these choices, up to canonical homotopy. Then the following becomes a

precise conjecture:

Conjecture A. There is a representation ρ of the (orbifold) fundamental groupoid

π1(FIPS,{qC}) into Cat1 such that ρ(qC) ≅ Db(XC) for all chambers C of the

secondary fan.

Here Cat1 denotes the category of small categories with morphisms given by

functors up to natural isomorphism – that is, the natural 1-category associated to

the 2-category of categories. If the FIPS has a non-trivial orbifold structure, we

need to use the orbifold fundamental groupoid (see [34], Ch. 13).

Several people have constructed representations along these lines. Of partic-

ular relevance to us are Donovan–Segal’s [18] examples arising from An surface

singularities. In [18], the authors explicitly identify the FIPS with a hyperplane

complement and show that its fundamental group(oid) acts on the derived cat-

egory of the phases. Recently, generalising [18], Halpern-Leistner–Sam [24] have

considered VGITs arising from so-called quasi-symmetric representations, using

work of Špenko–Van den Bergh [33] on non-commutative crepant resolutions. In

this setting, they construct a representation of the fundamental group of a cer-

tain hyperplane complement on the phases of this VGIT. Similar representations
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of fundamental groups of hyperplane complements also arise in work of Donovan

and Wemyss [19] but in a non-commutative setting.

In this thesis, we shall push these ideas further and discuss a strategy for proving

Conjecture A in many cases when our VGIT is not quasi-symmetric, where the

geometry of the discriminant is much richer than a hyperplane complement. The

general theme of this thesis is that nonetheless Conjecture A still seems to hold.

The outline of this thesis is as follows: §2-5 contain largely introductory material

and §6-10 contain the new results. In §2, we give more background and context for

the problem and explain our results. In particular, we explicitly describe the case

when the FIPS is 1-dimensional in §2.1. In §3, we recall the theory of GKZ dis-

criminants in the toric setting from [20] and introduce the FIPS formally. §4 recaps

the theory of derived equivalences between phases coming from grade restriction

windows. In §5, we describe how to use these equivalences to construct the repre-

sentation in Conjecture A on certain large radius paths. In §6 we use the theory

of “fractional grade restriction windows” to extend this to a representation on all

paths near a curve in the toric boundary of a 2d FIPS. In §7, we then prove that,

in two examples, we can extend this representation to the whole of the FIPS. In

higher dimensions, the problem becomes more complicated. Nonetheless we prove

in §8 that for a quasi-symmetric representation the FIPS is a hyperplane comple-

ment and, in fact, the underlying hyperplane arrangement agrees with the one in

[24]. Using the theory of “magic windows”, this is enough to prove Conjecture

A in the quasi-symmetric case. We then move on to the higher-dimensional non-

quasi-symmetric case in §9 and describe an example in detail where, following the

strategy outlined in §2.4.1, we can prove Conjecture A completely. In §9.3, we dis-

cuss how this relates to Donovan and Segal’s work [18] and construct an analogous

finite cover of the FIPS for this example. Finally, in §10 we discuss a conjecture

about how to construct a representation more generally. As part of this, we prove a

Jordan-Hölder-type theorem for certain semi-orthogonal decompositions of derived

categories.
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Notation: Let ei denote the ith standard basis vector for Zn and e∨i denote the

ith standard basis vector for (Zn)∨. Let L be the lattice of cocharacters or one-

parameter subgroups (1-PS) of TL – that is, L ∶= Hom(C∗, TL) – and hence L∨ is the

lattice of characters of TL. We let TS
1

L∨ ∶= L∨ ⊗ S1 denote the compact torus inside

TL∨ and TR
L∨ = L∨ ⊗ R×

>0 the connected real subtorus in TL∨ . The inclusions into

TL∨ are induced by the isomorphism R×
>0 ×S1 ≅ C∗ coming from polar coordinates.

A linear toric VGIT TL⟳ Cn is specified by its set of weights Q(e∨i ) ∶= βi ∈ L∨,

which can be packaged as a map Q ∶ (Zn)∨ → L∨. We shall assume that Q is

surjective and set k ∶= rank(L). If we let M ∶= ker(Q),N ∶= M∨ (both lattices of

rank n − k), then there are exact sequences:

0→ L
Q∨
Ð→ Zn AÐ→ N → 0

0→M
A∨
Ð→ (Zn)∨ QÐ→ L∨ → 0

(1)

The map A here is called the ray map and ωi ∶= A(ei) is the ith ray. We assume

that the rays are distinct and non-zero. As kerA = ImQ∨, the linear toric VGIT

TL⟳ Cn can equivalently be specified by A; cf. [17].

For an element l in a lattice L, its lattice length ∣l∣ is the positive integer such that

l = ∣l∣ul where ul ∈ L is the primitive generator of the ray through l. We abbreviate

the rank of L to Rk(L). For any field F and abelian group L, LF ∶= L⊗ZF. We also

set Hl ∶= {y ∈ L∨R ∣ ⟨l, y⟩ = 0}. R(z) and I(z) denote the real and imaginary parts

of a complex number z ∈ C respectively.

For a (stacky – see Definition 3.22) fan Σ in NR, we let XΣ be the corresponding

toric variety (stack). For a k-dimensional cone σ in Σ, we let Z(σ) ⊂ XΣ be the

codimension k torus-invariant subvariety (substack) which is the closure of the

torus orbit corresponding to σ (see [14], §3.2). We also denote the torus-invariant

divisor in XΣ corresponding to ωi by Di and so Di = Z(ωi). Similarly, if we

pick a polarisation on XΣ with corresponding polytope P ⊂ MR, then if F is a

k-dimensional face of P , we let Z(F ) ∶= Z(σ) ⊂ XΣ where σ is the codimension k

cone of Σ dual to F .

We abbreviate semi-orthogonal decomposition to SOD.

For a set of basepoints {pi} in X, π1(X,{pi}) denotes the orbifold fundamen-

tal groupoid of X on these basepoints. π1(X,p1, p2) denotes the elements of the

orbifold fundamental groupoid going from p1 to p2.
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pC1 pC2pW

L∨R

α1
α2

β(e∨2)β(e∨1)

qC1 qC2

C2C1

γ

γ′

Figure 1. The secondary stack F with the two large radius limits
pCi and principal discriminant pW marked (T) (for top) and its
stacky secondary fan (B) (for bottom).

2. Extended introduction

2.1. The case of a 1d FIPS. We first describe the simplest case of Conjecture

A when the FIPS is 1-dimensional. This is well-understood (see for example [18],

§2.1.1) and corresponds to the case of TL = C∗ ⟳ Cn. The secondary fan (see

Definition 3.13), which is a fan in L∨R ≅ R, is schematically shown at the bottom

of Figure 1. Because of the Calabi–Yau condition, the secondary fan always has

two chambers C1 and C2. As the secondary fan parametrises the possible GIT

quotients, we therefore have two phases (see Definition 3.21) denoted by XC1 and

XC2 and we let ij ∶XCj ⊂ [Cn /C∗] be the open immersion induced by the inclusion

of the semistable locus corresponding to Cj into Cn.

To get the correct stack structure for the FIPS, we have to enhance the secondary

fan to a so-called “stacky fan” (see Definition 3.22). In the 1d case, this “stacky

secondary fan” (see Definition 3.37) just consists of an element β(e∨i ) ∈ L∨ ∩Ci for

i = 1,2, which is given by β(e∨i ) ∶= lcm(βj ∣βj ∈ Ci) (see [16], Proposition 2.12). The

corresponding toric stack is called the secondary stack F (see Definition 3.38) and

is P(`1, `2)/µr where r ∶= gcd(∣β(e∨1)∣, ∣β(e∨2)∣), `i ∶= ∣β(e∨i )∣/r ∈ Z>0 and, if we pick

a1, a2 ∈ Z such that a1`1 + a2`2 = −1, then ζ ∈ µr acts by (ζa2 , ζa1). Thus F (shown

at the top of Figure 1) has no stacky points in the open torus orbit but may have

some orbifold points at the two large radius limits – that is, torus fixed points –

labelled pCi .

In any dimension, the discriminant is defined by GKZ’s principal A-determinant

(see Definition 3.6) and, in the 1d case, this consists of between 1 and 3 points.

There is always a unique point, which we denote pW here, in the open torus orbit of

F and we call it the principal component (see Definition 3.11). Then the torus fixed

point pCi is in the discriminant precisely when there are multiple weights lying in

the chamber Ci. In the case when only a single weight, βj say, lies in Ci, pCi is not

in the discriminant and is a Z∣βj ∣-orbifold point. As such, the FIPS, which is the

complement of the discriminant in F, is an (orbifolded) P1 with at most 3 points

missing (see Figure 1).
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In light of Conjecture A, we now want to construct an action of the fundamental

groupoid π1(FIPS,{qC1 , qC2}) where qCi is a real (see Definition 5.3) basepoint in

the FIPS near pCi . In dimension 1, this fundamental groupoid is easy to describe

– namely, it is generated by the paths α1, α2 and γ shown in blue in Figure 1. If

there are no orbifold points in the FIPS – that is, both pCi are in the discriminant

– then it is the free groupoid on these generators. Otherwise, if we have an orbifold

point of order d at pCi then the only relations are αdi = e. We will refer to the

paths αi as toric loops as they are loops which are invariant under the action of

the compact torus TS
1

L∨ ∶= L∨ ⊗ S1 and the path γ as a large radius path.

With this presentation of π1(FIPS,{qC1 , qC2}) to hand, we see that the path αi

must act by an auto-equivalence of XCi and we’ll choose this to be tensoring by

a certain line bundle on XCi . In fact, if we pick a small, possibly punctured, disk

VCi in the FIPS about pCi , there is a canonical way to identify π1(VCi , qCi) with

Pic(XCi) and hence there is a canonical line bundle associated to αi. We use this

line bundle to define our action of αi on Db(XCi).
We make this identification π1(VCi , qCi) ≅ Pic(XCi) in the 1d case as follows.

We’ve already seen that π1(VCi , qCi) ≅ ⟨αi⟩ and this is either Z or Z∣βj ∣, where

the latter case happens precisely when βj is the only weight in Ci. To understand

Pic(XCi), it helps to think about our VGIT in terms of fans in NR whose rays are

a subset of the n rays ωj defined by the short exact sequence (1) and with support

equal to the full-dimensional cone generated by all the rays ωj (see the discussion

before Remark 3.23). Since all phases of our VGIT are DM stacks, by standard toric

geometry (see [14], Proposition 6.4.1), we can identify Pic(XCi) ≅ L∨ whenever the

corresponding fan for XCi uses all the n rays ωj . Note that Rk(L) = 1 implies that

we only have 1 more ray than the number of dimensions and so, if we don’t use all

the rays, we must use all but one. If ωj denotes the ray we don’t use, the same

standard toric geometry tells us that Pic(XCi) ≅ L∨/⟨βj⟩ ≅ Z∣βj ∣. To complete the

argument, we can use the short exact sequences (1) to check that ωj is not in the

fan for XCi precisely when βj is the only weight in Ci.

As such, to get the full action ρ of π1(FIPS,{qC1 , qC2}), all that remains is to

freely assign an equivalence between Db(XC1) and Db(XC2) to γ. In the context

of linear toric Calabi–Yau VGITs, one can construct such an equivalence using

windows (see Definition 4.8), which were introduced in [32].

Remark 2.1. As we shall see below, there are infinitely many windows and these

are naturally indexed by Z. As such, there are correspondingly infinitely many

equivalences we could assign to γ. Hence this approach allows us to construct

infinitely many actions ρ and there seems not to be a canonical one, though this

ambiguity is naturally fixed by choosing an integer associated to γ.

To describe our windows, we first note that there is a positive number η naturally

associated to the wall given by the origin in L∨R, namely the absolute value of the

sum of the weights in Ci for either i. We note that η is independent of i because of
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the Calabi–Yau condition. Then, in this case, a window is just a full subcategoryW
of Db([Cn /C∗]) generated by C∗-equivariant line bundles on Cn whose weights lie

in an interval of width η −1. Such a window therefore depends on a choice of w ∈ Z
and given such a w, the corresponding window W(w) = ⟨O(d) ∣ d ∈ [w,w + η − 1]⟩.
The key property of windows in the Calabi–Yau setting (c.f. Corollary 4.16) is that,

for either j and any w, the restriction i∗j ∶W(w)→Db(XCj) is an equivalence. Then

the window equivalence φw from Db(XC1) to Db(XC2) is i∗2 ○ (i∗1)−1 – that is, we

lift from Db(XC1) into W(w) and then restrict to Db(XC2).

Remark 2.2. We note that if, instead of γ, we had chosen any path from qC1 to qC2

which together with the αi freely generates π1(FIPS,{qC1 , qC2}), then the same

argument as above would produce a different action. The particular choice above

was motivated by physics (see [27]).

In particular, if we had chosen the path γ′ shown in Figure 1 instead of γ and

if we fix ρ(γ) = φw, it is natural to ask what the equivalence ρ(γ′) is. Noting that

γ′ = α−1
2 ○ γ ○ α1 in π1(FIPS,{qC1 , qC2}), one checks that ρ(γ′) = φw+1 can also

be described as a window equivalence but using the window W(w + 1) instead of

W(w).
With both of these functors to hand, we can try to think more geometrically

about our action ρ by studying the auto-equivalence of Db(XC1) given by ρ((γ′)−1○
γ). This auto-equivalence is called a window shift (see Definition 4.18). It turns

out (see [25], Proposition 3.4) that window shifts can be described as a twist about

a spherical functor whose source category is the derived category of the C∗-fixed

locus in Cn (see Remark 4.19 for details). In particular, if our representation has

no 0 weights, the C∗-fixed locus is the origin and the window shift is a spherical

twist about a sheaf supported on the flopping locus.

2.2. At and near large radius in a higher-dimensional FIPS. So when the

FIPS is 1-dimensional we can solve Conjecture A. In higher dimensions life is not

so easy, one reason being that we don’t have such an easy explicit presentation for

π1(FIPS,{qC}). Nonetheless, as in the 1d case, we can try to focus on regions of the

FIPS where the topology is simpler and try to construct actions of the fundamental

groupoids of these regions.

Recall that the large-radius limits pC are the torus fixed points in F and there is

one for each chamber C of the secondary fan. As we shall see in §5.1 the, possibly

punctured, disk VCi near the large radius limit pCi in the 1d case generalises to

a certain analytic open region of the FIPS – called a “large radius region” (see

Definition 5.2) – whose closure in F contains the large radius limit pCi . Loops α

in π1(VCi , qCi) are again called “toric loops” as they are the higher-dimensional

analogue of our toric loops αi from the 1d case. Moreover, we still have the same

correspondence (see Lemma 5.4) between toric loops α and line bundles on XCi

and hence a canonical action of such loops.
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Now that we understand how to define our action in the region VCi ⊂ FIPS near

each large radius limit, we turn to constructing an action in another region of the

FIPS, called a “near large radius region”. To make this precise, fix a wall W in

the secondary fan for the rest of this section. Given such a wall W between two

chambers C1 and C2, recall that there is a unique torus-invariant rational curve in

F joining pC1 and pC2 . We will denote this curve by Z(W ), shown in Figure 2 (L)

(for left). Then there is a near large radius region VW ⊂ FIPS associated to W (see

§5.2), which connects VC1 with VC2 . This region lies “near” Z(W ) in the sense that

its closure in F meets Z(W ) in a subset with non-empty interior.

As a warm-up to Conjecture A, for the rest of this section we focus on con-

structing a representation of the fundamental groupoid π1(VW ,{qC1 , qC2}) with

two basepoints, one near pC1 and one near pC2 , on Db(XC1) and Db(XC2). We

call this fundamental groupoid the near large radius groupoid associated to W (see

Definition 5.9) and it is designed to capture the topology of the FIPS near the

rational curve Z(W ). Apart from toric loops at each of the basepoints, there are

additional paths in VW which connect qC1 with qC2 . To understand the near large

radius groupoid, it is helpful to single out such a path which is an analogue of the

path γ from the 1d case. We’ll denote a choice of such a path by γ0
C1,C2

, where our

notation is designed to keep track of the two chambers.

A first guess for γ0
C1,C2

is a path in Z(W ), going from qC1 to qC2 , such as γC1,C2

in Figure 2 (L). However, Z(W ) is often in the discriminant locus and so, as γ0
C1,C2

has to lie in the FIPS, we can’t choose such a path in general.

Instead, we use the fact that VW is fibred in cylinders over some base. As

VW ⊂ FIPS, these cylinders are punctured at points of the discriminant and we can

assume, without loss of generality, that our basepoints both lie on the boundary

of the same fibre. A schematic fibre is shown in Figure 2 (R), where the crosses

indicate the discriminant and where we have drawn a potential choice of γ0
C1,C2

.

The reason that this is a good analogue of γ is that, if we take the limit of our fibre

and the two basepoints in it under the 1-PS of TL∨ associated to a generic element

of L∨ ∩W , then γ0
C1,C2

limits to the path γC1,C2 in Z(W ) we initially wanted to

choose as an analogue of γ. We say that the path γ0
C1,C2

in VW is a “push-off” of

the path γC1,C2 in Z(W ).
We can see this limiting behaviour of γ0

C1,C2
as the fibre approaches Z(W ) –

that is, as the cylinder from Figure 2 (R) get closer and closer to Figure 2 (L) – as

follows. By construction of VW , all the points of the discriminant in the cylinder

fibre converge to the point pW . If we let mW be the intersection multiplicity of

the open torus orbit in Z(W ) with the discriminant, it follows that, for a fibre

sufficiently close to Z(W ), we can find a disk D, such as the one shown in Figure 2

(R), which contains all these mW punctures. Moreover, since our choice of γ0
C1,C2

is

outside D, it doesn’t interact with these punctures as the fibre tends to Z(W ) and

so γ0
C1,C2

extends across Z(W ). We call the subgroupoid of the near large radius

groupoid generated by the generalisations of the α and γ paths from the 1d case
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the large radius groupoid associated to W (see Definition 5.12) and denote it by

GWLR. It represents the closest thing we have near Z(W ) in a higher-dimensional

FIPS to the fundamental groupoid from the 1d FIPS.

Remark 2.3. In general, the large radius groupoid is a strict subgroupoid of the

near large radius groupoid. Explicitly, any path in the punctured cylinder fibre in

Figure 2 (R) which is not homotopic in the fibre to a path completely outside the

disk D is not in the large radius groupoid. We call such paths in VW near large

radius paths and observe that they arise whenever mW > 1 – that is, whenever the

discriminant intersects the open orbit in Z(W ) non-transversely. Since in general

the discriminant is reducible (see Definition 3.6), this non-transversal intersection

can arise when one component intersects the open orbit in Z(W ) non-transversely

or whenever multiple components intersect it.

We now turn to constructing the representation on π1(VW ,{qC1 , qC2}). We start

by considering what happens on the subgroupoid GWLR. Given we know how toric

loops act, this boils down to constructing the derived equivalence ρ(γ0
C1,C2

) between

XC1 and XC2 . In complete analogy with the 1d case, this is given by a window

equivalence, using the general theory of windows introduced in §4.

Remark 2.4. We can think about this more general window equivalence in a way

which makes the analogy with the 1d case clearer as follows. Namely, XC1 and XC2

are “connected” by a VGIT with Rk(L) = 1 in the sense that one can find (see [20],

Ch. 7, Theorem 2.10) open toric substacks YCi ⊂XCi such that XC1/YC1 =XC2/YC2

and YCi are the two phases of a toric Calabi–Yau VGIT with Rk(L) = 1. Then our

more general window equivalence can be thought of as taking a window equivalence

between YC1 and YC2 , as described in the 1d case, and then extending this by the

identity to XCi .

If we continue this line of thought, the secondary stack for the VGIT for Y is

exactly Z(W ) and, by the properties of the discriminant EA (see Theorem 3.33),

the FIPS for the VGIT for Y is the complement in Z(W ) of the components of

the discriminant in F which don’t contain Z(W ). In particular, if Z(W ) is not

completely in the discriminant in F, then the FIPS for the VGIT for Y is where

the FIPS of the VGIT for X meets Z(W ).

Putting the representation on the analogues of αi and γ together, we arrive

(in Proposition 5.20) at a representation ρW ∶ GWLR → Cat1 which assigns to the

analogue of the paths α/γ from the 1d case tensoring by a line bundle/a window

equivalence. Here the superscript on ρ reminds us that we are only considering

paths in VW .

Remark 2.5. Exactly as in the 1d case (see Remark 2.1), there are infinitely many

possible window equivalences between XC1 and XC2 we could choose from and these

are naturally indexed by Z. As such, there are infinitely many representations ρW

of GWLR and no canonical choice amongst these.
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qC1

qC2

D

pC2

pC1

pWγC1,C2 γ0
C1,C2

Figure 2. The torus-invariant curve Z(W ) with large radius lim-
its pCi and point pW in the discriminant (L) and a curve “near
large radius” with 3 points in the discriminant (R)

As GWLR is typically a strict subgroupoid of π1(VW ,{qC1 , qC2}) (see Remark 2.3),

the representation ρW constructed so far is however not the end of the story –

that is, we need to know how to assign equivalences to the near large radius paths.

Luckily for us, there is a natural source of extra “window-like” equivalences between

two neighbouring phases coming from fractional windows (see Definition 4.24),

introduced in [25]. These provide candidates for how to extend our representation

ρW ∶ GWLR → Cat1 from above to the whole of π1(VW ,{qC1 , qC2}). For a general

FIPS, we don’t know how to consistently pick these equivalences for all the near

large radius paths, though see §2.4.3 for some progress in this direction. However,

if we let W be any wall in the secondary fan and denote the two chambers on either

side of W by C1 and C2, we can show:

Theorem A (Theorem 6.15). Suppose Rk(L) = 2. Then we can choose appropriate

fractional windows to get a representation ρW ∶ π1(VW ,{qC1 , qC2}) → Cat1 such

that ρ(qCi) ≅Db(XCi).

What makes this theorem feasible is that, for a 2d FIPS, we can understand

π1(VW ,{qC1 , qC2}) explicitly and hence understand what relations we need to prove

between our functors. This explicit description of the fundamental groupoid comes

from the map on VW with punctured cylinder fibres discussed above, whose fibre

shown in Figure 2 (R). The basic observation is that, in the 2d case, this map is

actually a fibration with base a small, possibly punctured, disk. This fibration then

gives us an explicit description of π1(VW ,{qC1 , qC2}) in terms of the fundamental

groupoid of the fibre and the monodromy around a distinguished point in the base.

As we can present the fundamental groupoid of the fibre as a free groupoid, the

only relations are the monodromy relations and, in the 2d case, we can describe

the monodromy explicitly (see Lemma 6.5). Checking that these relations hold

on ρW then boils down to properties (see Remark 6.12) of the semi-orthogonal

decompositions used to define our fractional windows.
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Remark 2.6. It’s possible to glue together these near large radius groupoids across

different walls and the representations ρW compatibly. The end result is a repre-

sentation ρ of π1(U,{qC}) where U ∶= ⋃Walls W VW . However, the individual repre-

sentations ρW are not canonical (see Remark 2.5) and it’s not obvious whether we

can extend such an arbitrarily constructed ρ to a representation of π1(FIPS,{qC})
as in Conjecture A.

From here, there are two distinct directions in which to proceed and we deal

with these in turn in the next two sections.

(1) How to extend the representation ρ to the whole FIPS in the 2d case

(2) How to deal with higher-dimensional FIPS

2.3. Fundamental group representations of a 2d FIPS. In general, we don’t

know how to choose the representations ρW from Theorem A for each wall W of the

secondary fan such that, if we glue them together as in Remark 2.6, they extend to

a representation of the whole FIPS. Nonetheless, for the particular example of the

Octahedron VGIT, which we detail in §5.3 and §7.2, we are able to do this:

Theorem B (Theorem 7.16). In the Octahedron VGIT, we can choose represen-

tations ρW (as in Theorem A) for each wall W such that together they define a

representation of π1(FIPS,{qC}). Hence Conjecture A holds in this example.

By a quasi-projective form of the usual Lefschetz hyperplane theorem (see §9.2.1),

we expect π1(U) to generate π1(FIPS) in general. As such, to prove Theorem B,

we should only need to prove some additional relations between our functors. Again

there is a natural source of such relations in the context of VGIT called (fractional)

magic windows, which were introduced in [18]. The relevant theory is reviewed in

§4.2, in particular Definitions 4.31 and 4.35.

The proof of Theorem B then consists of two parts. First, we understand what

relations we need to prove in π1(U). This is purely topological and relies on the

method of Zariski–van-Kampen (detailed in §7.1). The idea here is to pick a nice

pencil of curves on the FIPS and see how the discriminant “braids” as we go around

critical values. Secondly, following on from Remark 2.6, we prove that we can choose

the representation ρW on each wall W such that, when we glue them together, there

are fractional magic windows which implement all these relations. This example is

interesting in that we really need to use fractional magic windows as there are no

ordinary magic windows.

Remark 2.7. We also use exactly the same strategy as part of the proof of Theorem

C which we discuss below (see §7.3 for the details).

2.4. Fundamental group representations of a higher-dimensional FIPS.

When the FIPS is higher-dimensional, its topology becomes even more complicated.

However, as mentioned in §1, there is one class of examples where the representation

in Conjecture A can be constructed – when the underlying TL-representation is

quasi-symmetric. In this case, we prove:
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Proposition (Theorem 8.8, Proposition 8.14). For a quasi-symmetric represen-

tation, the GKZ discriminant locus is, after taking logs, the complexification of a

real hyperplane arrangement and it agrees with the one constructed by Halpern-

Leistner–Sam in [24] up to an overall shift.

As [24], Proposition 6.6 constructs a representation of the complement of this

(log)-hyperplane arrangement using window equivalences, we have immediately

that:

Corollary 2.8. For a quasi-symmetric toric VGIT, ρ gives a representation of

π1(FIPS), thereby proving Conjecture A.

The strategy for proving this result is the same as for Theorem B. In the quasi-

symmetric case both parts – topological and magic window – are well-behaved.

In terms of topology, there is a presentation of the fundamental groupoid of the

complement of the complexification of a real hyperplane arrangement called the

Deligne groupoid (see, for example, [15, 29, 30]). This makes it straightforward

to understand what relations we need to prove between our window equivalences.

Moreover, Halpern-Leistner–Sam [24] show that, to every such relation, there is a

corresponding magic window which implements it.

Outside of the quasi-symmetric setting, both aspects of the problem are harder.

On the magic window side, there are examples where magic windows are not suf-

ficient to implement all the relations (indeed they may not exist at all). In fact,

the Octahedron VGIT is such an example – see Example 4.34. Even fractional

magic windows are not enough (even for a 2-dimensional FIPS), as Example 4.37

shows. The topology of FIPS is also typically more complicated than that of the

complement of a hyperplane arrangement. Nonetheless, we can prove:

Theorem C (Theorem 9.35). Conjecture A holds for the non-quasi-symmetric

“Triangle VGIT” whose FIPS, introduced in §9, is 3-dimensional and where the

phases are (orbifold) resolutions of a certain 3-dimensional non-isolated Z2 ×Z2

quotient singularity

There are two approaches to simplifying the topology of the FIPS one could take

to prove such a theorem:

● Use the Lefschetz hyperplane theorem

● Take a cover of the FIPS

We come to these in turn in the next two sections.

2.4.1. Lefschetz strategy. To get an inductive approach to proving Conjecture A,

we could try to use the Lefschetz hyperplane theorem which should, in principle,

allow us to reduce the problem to several problems with lower dimensional FIPS.

The ultimate aim behind this would be to reduce to the 2d case. We carry this out

successfully in §9 for the Triangle VGIT and prove Theorem C from this perspective.
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The basic idea behind this approach is that, if we pick a toric divisor in the

secondary stack, then all the phases near that divisor can be described in terms

of several simpler VGIT problems glued together (this can be phrased in terms of

polyhedral subdivisions – see §3.3). In addition, the complement of the discriminant

on that divisor can be described (see Theorem 3.33) analogously as a gluing together

of the FIPS of the simpler VGITs. So we could hope that if we proved Conjecture

A for these VGIT problems near some (or all) of the toric divisors then this might

be enough to prove it for the original VGIT.

Topologically the idea to implement this comes from (a quasi-projective version

of) the Lefschetz hyperplane theorem. This says that, when the FIPS is at least

3-dimensional, the region where a tubular neighbourhood of any ample toric divisor

in the secondary stack meets the FIPS necessarily contains the homotopy 1-type.

As the secondary stack is proper, such an ample toric divisor always exists.

However, in general, this region is not itself a tubular neighbourhood of the divi-

sor in the FIPS. One issue is that many of the toric divisors often lie completely in

the discriminant and so such regions are at best punctured tubular neighbourhoods.

More seriously, the discriminant might intersect the divisor “non-transversely”.

But if the discriminant meets such a toric divisor “transversely”, then the topol-

ogy of this region should be able to be understood in terms of the topology of the

toric divisor. Hence we would have reduced the problem to several simpler problems

with lower-dimensional FIPS and we could continue iterating this approach.

The two main difficulties with this strategy are proving transversality (see §9.2.1)

and solving the 2-dimensional problem (which we have discussed in §2.3).

2.4.2. Covering strategy. Covers of the FIPS were used successfully by Donovan and

Segal in [18] to prove Conjecture A in a class of non-quasi-symmetric examples. The

idea is that, for these examples, there is a finite cover of the FIPS which is itself

the FIPS of a quasi-symmetric VGIT and hence for which we can prove Conjecture

A. Moreover they observe that the original VGIT corresponds to a certain “slice”

of this quasi-symmetric VGIT.

We use this approach in §9.3 to construct an analogous cover of the FIPS of the

Triangle VGIT. In this case, the “unsliced” VGIT arises as the representations of

the underlying quiver (shown in Figure 27) of an NCCR on the original (singular)

affine GIT quotient, in much the same way as in the examples in [18]. Having

already constructed an action in §9.2, we content ourselves by just sketching how

to use this cover to reconstruct the action on the Triangle VGIT in Theorem C.

Remark 2.9. The construction of the unsliced VGIT using NCCRs allows us to

relate our story to actions of hyperplane complements arising in the work of Wemyss

and Donovan [19, 36]. See Remark 9.48.

There are two issues with doing this covering strategy more generally:
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● Slicing an “unsliced” VGIT in this way does not in general produce a finite

cover between the FIPS of the unsliced VGIT and the FIPS of the sliced

VGIT.

● Even if we have a finite cover arising in this way, this only helps us if we

can prove Conjecture A for the “unsliced” VGIT. However, for a given

VGIT, we don’t know when we should expect it to arise as a slice of a

quasi-symmetric one.

2.4.3. Representation on near large radius paths. Finally, in §10, we forget about

the complicated topology of the FIPS and instead discuss an idea about how to

generalise the construction of the representation ρW for near large radius paths in

2-dimensions (see Theorem A) to higher dimensions. Recall that, in the 2d case, we

used fractional windows to construct ρW on near large radius paths. These exist

more generally and give a natural guess for how to define ρW in higher dimensions.

However, they depend on a semi-orthogonal decomposition (SOD) of Db(Z ′
λ) where

λ ∈ L is a normal to the wall W and Z ′
λ is the λ-fixed locus inside Xβ where β ∈ L∨

is any element in the interior of W .

So which SOD should we pick to define ρW on our near large radius paths?

On the one hand, there is a natural way to get SODs of Db(Z ′
λ) because Z ′

λ is

itself a phase of another (usually not Calabi–Yau) VGIT. In recent years, general

VGIT technology has been developed [6, 22] which, for a given set of paths in L∨R
connecting our phase to certain “minimal” phases – that is, phases for which KX

is nef – allows us to produce SODs of Db(Z ′
λ).

On the other hand, we recall in §3.1 that the components ∇Γ of the GKZ dis-

criminant are labelled by faces Γ of the polytope ∆ ⊂ NR, which is the convex hull

of the rays. The rays on Γ itself form a VGIT and there is a “complementary”

VGIT called the Higgs VGIT. A minimal phase of the Higgs VGIT is called a Higgs

phase associated to Γ and we denote it by ZΓ. There is an intriguing conjecture of

Aspinwall et al. [4], which (adapted to the present context) says:

Conjecture B ([4], Conjecture 5). Loops in our near large radius curve (Figure 2

(R)) about a point in ∇Γ should correspond to twists about a spherical functor with

source category Db(ZΓ)

Remark 2.10. The physical intuition behind this (see [4] for much more detail) is

that the FIPS is closely related to the space of central charges of D-branes. As

such, when we approach a point in ∇Γ, certain D-branes become “massless”. These

massless D-branes should form a well-defined category independent of the point in

∇Γ – this is the category Db(ZΓ) in the conjecture.

Then, if we take a stable object in Db(X) and vary its central charge around a

point of ∇Γ, massless objects in Db(ZΓ) can destabilise it. To form a new stable

object from the old one, we can combine it with the massless objects which desta-

bilise it. This should give rise to an auto-equivalence of Db(X) which is what the

twist about a spherical functor in the conjecture is supposed to represent.
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It turns out that the minimal phases in the SODs above are actually Higgs phases

and so it seems like the correct SODs to use as far as Conjecture B is concerned

are the ones coming from VGIT as above.

However, if this were true, then we would expect that such SODs always exist

and that the number of factors in these SODs should be independent of the extra

data of the paths needed to define them. We show that such a Jordan-Hölder

property holds for these SODs:

Theorem D (Theorem 10.4). Any appropriate set of paths in L∨R starting at Z ′
λ

gives rise to full embeddings iΓ,j ∶ Db(ZΓ) → Db(Z ′
λ) (for some collection of faces

Γ and j = 1, . . . , nΓ,W ) and an SOD of Db(Z ′
λ) into these pieces. Moreover, the Γ

which occur and the number nΓ,W are independent of the particular choice of paths.

Remark 2.11. The W -dependence in nΓ,W comes from the W -dependence of Z ′
λ.

The first part of this theorem is standard (see [6]). Our contribution is the second

part.

If we let mΓ,W be the intersection multiplicity of ∇Γ with the curve Z(W ),
then, since there are mΓ,W points of ∇Γ in the curve in Figure 2 (R), Conjecture

B naturally leads us to predict:

Conjecture C (Conjecture 10.15). The number nΓ,W of embeddings of Db(ZΓ) in

Theorem D agrees with the intersection multiplicity mΓ,W

If this holds, we may pick any SOD Db(Z ′
λ) = ⟨A1, . . .Aj , . . .⟩ from Theorem D

and a basis {γj} for the fundamental group π1(D) (where D is the disk in Figure

2 (R)) such that, if Aj is associated with Γ then γj loops around a puncture in

D at a point of ∇Γ. Then there is a natural spherical functor from Aj to Db(X)
(see Remark 4.17) and we can define ρW (γj) to be its twist. This at least gives a

conjectural action which is consistent with Conjecture B.

Remark 2.12. Even if this conjecture holds, it not clear that any SOD can be

found such that ρW extends to an action of the whole near large radius groupoid.

The main difficulty is that we have no general way of understanding what the

monodromy is.

3. Discriminants and the FIPS

In this section, we introduce some necessary background (largely following [20],

Ch. 9 and 10) on principal A-determinants, the FIPS, secondary fans/polytopes/stacks

and Horn uniformisation.

3.1. The discriminant and the FIPS. Abusing notation, let A = {ωj} ⊂ N be

the (numbered) set of rays of our VGIT. In this section, we only consider Calabi–

Yau torus representations – that is, where the torus TL ∶= L⊗C∗ acts on Cn through

SLn. This allows us to find a height 1 affine hyperplane H – that is, of the form
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∆

Γω1

ω4

ω3ω2

Figure 3. ∆ is a redundant face of ∆ but Γ is a minimal face

⟨m,−⟩ = 1 for some primitive m ∈ M – on which all the rays ωj lie. So we can

equivalently think of A as a subset of the polytope ∆ ∶= σ ∩H, where σ ⊂ NR is

the cone generated by all the rays. Since we always assume that the ray map A is

surjective, A ⊂ ∆ affinely generates H ∩N , which is a technical assumption needed

for the results in [20] to hold.

Identifying elements ω ∈ N =M∨ with characters xω of TM , we may consider:

Definition 3.1. CA ∶= {f(x) = ∑ω∈A aωxω} ≅ (Cn)∨ is the set of functions on TM

with exponents in A.

Definition 3.2. ([20], Ch. 9, Definition 1.2) Set

∇0 ∶= {f(x) = {aω}ω∈A ∈ CA ∣ f has a critical point in TM}

and ∇A ∶= ∇̄0 ⊂ CA. When ∇A is a hypersurface, its defining equation is called the

A-discriminant ∆A({aω}ω∈A). Otherwise we declare ∆A = 1.

If we pick a face Γ of ∆, then we can consider the set ∇0 of functions in CA∩Γ

with a critical point in TMΓ
where MΓ ∶= (R⟨Γ⟩∩N)∨. Exactly as in Definition 3.2,

we define ∇A∩Γ = ∇̄0 ⊂ CA∩Γ and ∆A∩Γ to be the defining equation of ∇A∩Γ when

this is a hypersurface (and 1 otherwise). In fact, for the purposes of defining the

discriminant we mainly care about minimal faces.

Definition 3.3. For a face Γ ⊂ ∆, we define the lattice LΓ to be the lattice of

relations between rays on Γ. We call the face Γ minimal if LΓ is non-zero and,

for every ray ωi in Γ, there is some non-trivial relation l ∈ LΓ which involves ωi.

Non-minimal faces are called redundant (see [4], 3.2.2)

Remark 3.4. We can interpret this condition dually in terms of weights. Namely,

Γ is minimal precisely when the VGIT associated to the rays on Γ (see §3.5) has

no zero weights.

Since zero weights correspond to just adding a factor of C to the VGIT descrip-

tion, the VGIT associated to a redundant face is just the VGIT associated to a

minimal face times Ck for some k > 0.

In fact, redundant faces which are not vertices (such as ∆ in Figure 3) have

∆A∩Γ = 1 since ∇A∩Γ has codimension greater than 1.

Example 3.5. We take A to be the four points in ∆ in Figure 3, namely:

ω1 = (0,0,1), ω2 = (1,0,1), ω3 = (2,0,1), ω4 = (0,1,1)
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Then ∇A is defined as the closure of those (a1, a2, a3, a4) such that f(x, y, z) =
z(a1 + a2x + a3x

2 + a4y) has a critical point in (C∗)3.

Explicitly, this says that there is such an (x, y, z) obeying:

z(a2 + 2a3x) = 0, a4z = 0, a1 + a2x + a3x
2 + a4y = 0

As such, this is equivalent to a4 = 0 and a1 + a2x + a3x
2 having a multiple root.

Thus ∇A = {a4 = 0 = a2
2 − 4a1a3} and this has codimension 2 (so ∆A = 1). We note

however that ∇A∩Γ = {a2
2 = 4a1a3} (where Γ is the minimal face shown in Figure 3)

has codimension 1 so ∆A∩Γ ≠ 1 is still interesting in this example.

Definition 3.6. The principal A-determinant EA({aω}ω∈A) ∶=∏Γ⊂∆ ∆mΓ

A∩Γ ∈ OCA(CA)

Remark 3.7. Here the product is over all non-empty faces Γ of ∆ (including ∆

itself). By the preceding discussion about minimal faces, it’s equivalent to take

the product over all the vertices and minimal faces. The multiplicity mΓ ∈ Z>0

is defined in [20], Ch. 10, 1.B but we will not need it in this thesis. Finally we

interpret ∆A∩Γ as a function on CA by pulling-back under the natural projection

p ∶ CA↠ CA∩Γ induced by the inclusion A ∩ Γ ⊂ A and define ∇Γ ∶= p∗(∇A∩Γ).

Remark 3.8. We can motivate EA from the perspective of toric geometry as follows.

Let SA ⊂ N be the semigroup generated by A and 0, and let YA ∶= Spec(C[SA]).
Then TM ⊂ YA and we can consider CA as functions on YA. At least when YA is

smooth away from its torus fixed point, this allows us to define ∇A alternatively in

terms of the locus of f ∈ CA where the twisted de Rham complex (Ω●
YA
,∧df) fails

to be exact (see [20], Ch. 10, Theorem 2.6 for details).

If instead we let D be the union of the toric divisors in YA and consider the

locus where the logarithmic de Rham complex (Ω●
YA

(logD),∧df) ([20], Ch. 10,

§2.A) fails to be exact, we arrive at Gelfand, Kapranov, and Zelevinsky’s definition

of the principal A-determinant EA (c.f. [20], Ch. 10, Proposition 2.4). By [20],

Ch. 10, Theorem 1.2, our definition of EA is equal (up to a sign) to GKZ’s definition.

We are now in a position to be able to define the FIPS based on [18], §4.1.

Recall that TM acts on CA ≅ (Cn)∨ via the dual short exact sequence from (1).

Since ∇A and {EA = 0} are invariant under TM ([20], Ch. 9, 3.B), they descend to

give divisors on the quotient stack [CA /TM ]. Abusing notation, we denote these

divisors in the quotient stack by the same symbols.

Definition 3.9. The FIPS of the VGIT associated to A is [CA /{EA = 0}/TM ].
The discriminant (locus) is {EA = 0} ⊂ [CA /TM ].

Remark 3.10. With our definition of the discriminant locus and recalling the nota-

tion from Remark 3.7, we see that ∆A∩Γ ≠ 1 precisely when codimCA∩Γ(∇A∩Γ) = 1.

As such, ∇Γ only appears in the discriminant when codimCA(∇Γ) = 1 and so the
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(reduced) discriminant locus is:

⋃
Γ⊂∆∣codimCA(∇Γ)=1

∇Γ

One might expect that ⋃Γ⊂∆∇Γ is a more natural definition but it is not clear to

us whether this agrees with our definition. Namely, can there be points outside of

the discriminant locus which nonetheless lie in ∇Γ for some face Γ?

For later use, we name certain components of the discriminant as follows:

Definition 3.11. The principal discriminant of the VGIT associated to A is

∇pr ∶= ∇A. When it is a hypersurface, we call it the principal component of the

discriminant locus.

The components of the discriminant locus which are toric divisors are called the

toric parts of the discriminant.

3.2. The secondary fan and phases of the VGIT. We recall that for any (not

necessarily Calabi–Yau) toric VGIT, the space of (real) characters L∨R of the torus

TL carries a natural fan structure (see [17], 3.4) – the so-called secondary fan –

coming from the different possible GIT quotients of Cn by TL. We introduce this

here for a general linear toric VGIT.

Definition 3.12. Two characters β1 and β2 in L∨ are called GIT equivalent if the

semistable loci (Cn)ssβ1
= (Cn)ssβ2

.

Definition/Theorem 3.13 ([14], §14.4). The GIT equivalence classes of charac-

ters define a fan in L∨R called the secondary fan whose rays include those generated

by the non-zero weights βi and whose support is the cone generated by all the

weights. A wall of the secondary fan is a cone of codimension 1 and a chamber is

a connected component of the complement of all the walls.

Remark 3.14. In the Calabi–Yau case, the weights sum to 0 and so the cone gener-

ated by the weights equals L∨R. Hence, for Calabi–Yau VGITs, the support of the

secondary fan is L∨R.

Remark 3.15. In the setting of linear toric VGITs, there are several algorithms

that can be used to calculate the secondary fan. One such algorithm is based on

“generic characters” (see [14], Proposition 14.4.9). This particular algorithm makes

clear that, if Rk(L∨) ≤ 2, every ray of the secondary fan has at least one weight on

it. If the VGIT is also Calabi–Yau, the secondary fan is the unique fan with rays

generated by the weights and with support L∨R (see Remark 3.14).

Now that we understand the secondary fan, we introduce the dual notion of a

secondary polytope.

Definition 3.16. A secondary polytope is any polyhedron in LR whose normal

fan is the secondary fan. If we start with a set of rays A ⊂ N , we denote any

corresponding secondary polytope by Σ(A).
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Remark 3.17. For a non-Calabi–Yau VGIT, the secondary polytope need not be

bounded (and so not really a polytope). However, by Remark 3.14, in the Calabi–

Yau case Σ(A) is actually a polytope.

In the Calabi–Yau case, we can link the principal A-determinant EA (see Defi-

nition 3.6) with secondary polytopes by the following:

Theorem 3.18 ([20], Ch. 10, Theorem 1.4). The Newton polytope of EA is a

secondary polytope.

Remark 3.19. In [20] (Ch. 7, Definition 1.6), the authors define the secondary

polytope Σ(A) in the Calabi–Yau case. It follows from Theorem 3.18 that their

secondary polytope (which equals the Newton polytope of EA) is a secondary poly-

tope according to Definition 3.16. Our weaker combinatorial notion of secondary

polytope will be sufficient for our purposes in this thesis.

It is clear from our definition of the secondary fan that it parametrises the

possible GIT quotients in our VGIT and this allows us, in particular, to define

phases of the VGIT.

Definition 3.20. For β ∈ L∨, the GIT quotient Xβ is the Artin quotient stack

[(Cn)ssβ /TL].

It follows immediately from the definition that any two GIT quotients whose

polarisations lie in the same chamber C of the secondary fan are identical. As in

§1, we define:

Definition 3.21. A phase XC of the VGIT associated to the chamber C is Xβ for

any β ∈ C ∩L∨.

This is a smooth DM stack as there are no strictly semistable points for these

quotients (see [14], Theorem 14.3.14).

If we prefer, we can think about the phases of the VGIT in terms of fans as

follows. First, we recall:

Definition 3.22 ([16], Definition A.1). A stacky fan Σ is the data (Λ1, Λ2, β, Σ)
where:

● Λ2 is a finitely generated abelian group

● Λ1 is a lattice and Σ is a fan in (Λ1)R
● β ∶ Λ1 → Λ2 is a homomorphism with finite cokernel

By [20], Ch. 7, §2, the chamber C determines a quasi-projective simplicial – that

is, all the cones are cones over simplices – fan ΣC ⊂ NR with support σ = Cone({ωi}),
whose rays form a subset of the original rays {ωi}. Moreover, every such fan

occurs for some chamber C. Then the phase XC is the toric stack with stacky fan

(Zm,N,A∣Zm ,Σ′
C) where Zm ⊂ Zn indexes the rays in ΣC and the cones in Σ′

C are

σJ ∶= Cone(ej ∣j ∈ J) ⊂ Rm for those subsets J ⊂ {1,⋯,m} such that AR(σJ) is

contained in a cone in ΣC .
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Figure 4. 3 polyhedral subdivisions of the triangle ∆

Remark 3.23. In the Calabi–Yau case, by slicing such fans by the height 1 hyper-

plane H (see the first paragraph of §3.1), we get a bijection between chambers in

the secondary fan (or vertices in a secondary polytope) and (marked) “coherent”

triangulations of ∆ (see Definition 3.26). In this dictionary, coherence of the trian-

gulation is equivalent to quasi-projectivity of the phase. For the precise meaning

of triangulation, see Definition 3.24 below.

3.3. Polyhedral subdivisions. For a Calabi–Yau VGIT, we saw in Remark 3.23

that chambers of the secondary fan (or dually, vertices of a secondary polytope)

corresponded to “coherent” triangulations of the polytope ∆ living in the height 1

affine hyperplane H ⊂ NR. More generally, we’ll see in Proposition 3.27 that we get

a correspondence between faces of a secondary polytope and coherent polyhedral

subdivisions of ∆.

Definition 3.24. ([20], Ch. 7, Definition 2.1) A marked polytope (∆,A) is a pair

where ∆ is a convex polytope in the height 1 affine hyperplane H and A is a subset

of ∆ ∩N containing all the vertices of ∆.

A polyhedral subdivision of (∆,A) is a finite number of marked polytopes (∆i,Ai)
such that:

● Ai ⊂ A and ∆i is full-dimensional

● ∆i ∩∆j is a (possibly empty) face of both ∆i and ∆j and Ai ∩ (∆i ∩∆j) =
Aj ∩ (∆i ∩∆j)

● ⋃i∆i = ∆

A triangulation of ∆ is a polyhedral subdivision {(∆i,Ai)} of (∆,{ωi}) such that

∆i are all simplices and Ai are the vertices of ∆i.

The subdivision S = {(∆i,Ai)} refines S′ = {(∆′
j ,A

′
j)} if, for all j, the collection

of (∆i,Ai) such that ∆i ⊂ ∆′
j forms a subdivision of (∆′

j ,A
′
j).

Example 3.25. In Figure 4, we have drawn 3 polyhedral subdivisions of the tri-

angle ∆ = Conv(0, (2,0), (0,2)) where A is the set of 6 points ∆ ∩ Z2. The first

and second have two pieces ∆1 and ∆2 and Ai ∶= ∆i ∩A. The third has one piece

∆1 = ∆, but A1 is the set of five rays shown.

For other polyhedral subdivisions, see Figure 5. For all the 14 possible triangu-

lations, see Figure 24.

We now want to define what it means for a subdivision S to be “coherent”. For

this, we recall that η ∈ (Rn)∨ defines a convex, piecewise-affine function η̃ on ∆ by
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η̃(q) = min{t ∣ (q, t) ∈ ∆η} where:

∆η = Conv{(a, t) ∈H ⊕R ∣ a ∈ A, t ≥ η(a)}

Definition 3.26 ([16], Definition A.10). η ∈ (Rn)∨ is a defining function for the

polyhedral subdivision S = {(∆i,Ai)} if the convex, piecewise-affine function η̃ has

the following properties:

● η̃∣∆i extends to an affine function ζi on H

● η(a) = ζi(a) precisely when a ∈ Ai
Moreover, if η ∈ (Zn)∨ and, for each i, ζi is integral with respect to the lattice H∩N ,

we say η is an integral defining function. The subdivision S is called coherent if it

has a defining function.

As mentioned above, the reason we care about such subdivisions is the following:

Proposition 3.27. ([20], Ch. 7, Theorem 2.4) Coherent polyhedral subdivisions S

of (∆,{ωi}) are in bijection with faces F of a secondary polytope via S ↦ F (S),

where F (S) is the convex hull of all vertices corresponding to triangulations which

refine S. Moreover, F (S) ⊂ F (S′) ⇐⇒ S refines S′.

Remark 3.28. We’ll see in §9 that the three polyhedral subdivisions in Example

3.25 correspond to three 2-dimensional faces of a secondary polytope under this

correspondence.

Remark 3.29. In §2, we mentioned how the phases of a VGIT near a toric divisor

in the secondary stack were phases of simpler VGITs glued together. The above

bijection now makes this precise. Namely, such a divisor corresponds to a facet in

Σ(A), which in turn corresponds to a certain polyhedral subdivision of our original

VGIT. The phases near the toric divisor therefore correspond to triangulations

which refine this particular subdivision. Each part (∆i,Ai) of this subdivision

is the data for a new Calabi–Yau VGIT with fewer rays and hence is simpler.

Moreover, the phases of the original VGIT near this toric divisor correspond to

certain phases in each of these simpler VGITs glued together.

Remark 3.30. Following on from Remark 3.29, it is helpful to note that the phases

associated to a face F of Σ(A), which is dual to a k-dimensional cone σ, are

precisely the phases of another toric VGIT. Unlike the original VGIT, this face

VGIT associated to F is non-linear. Namely, we just replace the starting linear

space Cn with the (non-linear) open subset Xσ ∶= (Cn)ssβ for any β ∈ L∨ in the

relative interior of σ.

Moreover, if Lσ ⊂ L denotes those 1-PS which pair trivially with σ, then, by

construction of Xσ, only 1-PS in Lσ have fixed points in Xσ. As such, the secondary

fan for the face VGIT is just the pull-back of the secondary fan for the TLσ -action

on Xσ by the quotient map L∨R ↠ L∨R/⟨σ⟩.

When F (S) is an edge of Σ(A) we can make Proposition 3.27 more explicit using

the notion of circuits.
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Figure 5. Two triangulations (L) and (R) of ∆ related by an
edge of Σ(A) whose subdivision is shown in the centre

Definition 3.31. ([20], Ch. 7, Definition 1.B) A collection of rays {ωi} ⊂ N forms

a circuit if there is precisely one linear relation between the rays and this relation

involves all the rays. A face Γ ⊂ ∆ is called a circuit if the collection of all rays

lying on Γ forms a circuit.

Then it can be shown (see [20], Ch. 7, Theorem 2.10) that the coherent polyhe-

dral subdivisions S such that F (S) is an edge of Σ(A) correspond to certain circuits

Z in A. Then two vertices of Σ(A) are connected by F (S) if the corresponding

triangulations are the same outside Conv(Z) and inside Conv(Z) agree with one

of the two possible triangulations of the circuit Z. Therefore the subdivision S

corresponding to the circuit Z has Conv(Z) as one of its pieces.

Example 3.32. In Figure 5, we have drawn two triangulations of the triangle

∆ from Example 3.25. The four rays ω2, ω4, ω5, ω6 form a circuit Z and outside

Conv(Z) (shaded grey in the Figure) the two triangulations are identical. As such,

the triangulations differ by the two possible triangulations of Conv(Z) and so are

connected by an edge in the secondary polytope. The corresponding subdivision is

shown in the middle of Figure 5. Geometrically, the birational map between the

two corresponding phases is a standard flop.

We’ll now turn to how the discriminant behaves when we restrict it to a face of a

secondary polytope Σ(A). So let S = {(∆i,Ai)} be a coherent subdivision and F (S)
be the corresponding face of Σ(A). Since the Newton polytope of EA is a secondary

polytope (see Theorem 3.18), EA = ∑φ∈Σ(A) cφ∏ω∈A a
φ(ω)
ω and F (S) corresponds to

a collection of monomials of EA. Therefore we can define the coefficient restriction

EA∣F (S) ∶= ∑φ∈F (S) cφ∏ω∈A a
φ(ω)
ω . Then we have:

Theorem 3.33 ([20], Ch. 10, Theorem 1.12’). EA∣F (S) = c∏iE
mi
Ai

where ⟨Ai⟩ is

the abelian subgroup of N generated by the elements of Ai, mi = [N ∶ ⟨Ai⟩] and c is

some constant.

Remark 3.34. This result tells us that the face F (S) is built up from the secondary

polytopes Σ(Ai) of the simpler VGIT problems defined by Ai (see Remark 3.29).

Specifically, it is a Minkowski sum of the Σ(Ai).

3.4. The secondary stack. For a Calabi–Yau VGIT, defined by A ⊂ N living in

a height 1 affine hyperplane H ⊂ NR, we shall now describe how to enhance the

secondary fan from §3.2 to a stacky fan, called the stacky secondary fan.
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This stacky fan is defined by Λ2 = L∨ and Λ1 = (Zn
′
)∨, where e∨i (for i = 1,⋯, n′)

indexes the rays ρi of the secondary fan and we assume that, if there are no rays

with multiple weights on them, e∨i (for i = 1,⋯, n) indexes the ray generated by

βi (see Definition 3.13). Then we may define β̃ ∶ Λ1 → Λ2 by β̃(e∨i ) = uρi where

uρi ∈ L∨ is the primitive generator of ρi. Now a subset J of {1,⋯, n′} defines a

cone σJ ∶= Cone(e∨j ∣j ∈ J) ⊂ (Λ1)R. We define our fan Σ by declaring that σJ is in

Σ precisely when β̃R(σJ) is contained in a cone of the secondary fan.

Unfortunately, β̃ is not quite the right β for the stacky secondary fan. Instead,

to define β(e∨i ), we must consider the polyhedral subdivision S of ∆ corresponding

(using Proposition 3.27) to the facet of Σ(A) dual to uρi . We let cS ∈ (Zn)∨ be any

primitive element in the Z-linear span of the integral defining functions for S (see

Definition 3.26) such that Q(cS) ∈ ρi.

Example 3.35. For the 3 polyhedral subdivisions of the triangle in Figure 4 (read-

ing left to right), we see that e∨1 , 2e∨1 + e∨2 and e∨4 are integral defining functions for

these subdivisions. Since they are primitive in (Z6)∨, we can choose cS to be equal

to them.

We define

β(e∨i ) ∶= Q(cS) ∈ L∨

With this definition, β(e∨i ) is simply a positive integer multiple of β̃(e∨i ).

Remark 3.36. One can check that, if the ray ρi of the secondary fan has a single

weight – βi say – lying on it, then β(e∨i ) = βi ∶= Q(e∨i ). This is because we can take

cS = e∨i for such a subdivision.

By Remark 3.15, for a Calabi–Yau VGIT with Rk(L∨) ≤ 2, the secondary fan is

the unique fan with rays generated by the weights and with support L∨R. As such,

if this VGIT does not have multiple weights on the same ray, then it follows that

β = Q. This will be the setup in the case of a 2d FIPS in §6.

Definition 3.37 ([16], Lemma A.31). The stacky secondary fan consists of the

data ((Zn
′
)∨, L∨, β,Σ) as defined above.

Recall that, to any stacky fan Σ, there is an associated toric stack (see [16],

Definition A.2).

Definition 3.38. The secondary stack F is the toric stack associated to the stacky

secondary fan.

Remark 3.39. This definition of F is equivalent to Definition A.28 in [16]. To see

this, use [16], Lemma A.31 and note that, as we assume A ⊂ N generates N , KA = 0

and so ΞA = L∨.

Remark 3.40. It follows from Remark 3.14 that F is proper (see [14], Theorem

3.1.19).
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Remark 3.41. Instead of our definition of the FIPS (see Definition 3.9), it is perhaps

more natural to define the FIPS as a complement inside F. To make this precise,

observe that Theorem 3.18 tells us that EA extends to a global section of a line

bundle on F. Then we could have defined the FIPS as the complement of the zero

locus of this section inside F.

One can show that the FIPS is an open substack of F and is always a DM stack

(see [18], §4.1). On the other hand, F can have large isotropy groups. It follows from

Remark 3.40 that F is a toric compactification of the FIPS. This is one important

reason why the secondary stack F is such a central object in the study of the FIPS.

It will sometimes be useful to think of the discriminant as living inside F as opposed

to [CA /TM ] (see Definition 3.9).

Definition 3.42. The discriminant (locus) inside F is the complement of the FIPS

inside F.

If we abuse notation and let ∇Γ also denote the closure of ∇Γ in F, then the

discriminant in F is just the union of the components ∇Γ for all faces Γ plus some

extra toric divisors, indexed by rays of the secondary fan with no weights on them.

In fact, we can describe the toric part of the discriminant in F completely. First,

we note that the components ∇ωi of the discriminant in F corresponding to rays

ωi which are vertices of ∆ are toric as ∇ωi = {ai = 0} is in the discriminant. On

the other hand, it is entirely possible to have toric divisors in the FIPS – that is,

divisors which are not (wholly) in the discriminant locus. In fact, since ∇Γ for Γ

a non-vertex face of ∆ is never a coordinate hyperplane in CA, it follows from the

definition of the FIPS that divisors in the FIPS are indexed precisely by the i from

1 to n such that the ray ωi ∈ N is not a vertex of ∆. The ray in the secondary

fan corresponding to the toric divisor in the FIPS indexed by i is therefore the one

generated by βi.

It follows that the toric components of the discriminant in F correspond to rays

of the secondary fan with either no weights on or only weights corresponding to

vertices of ∆. An elementary argument using the short exact sequences (1) shows

that, whenever a ray in the secondary fan has multiple weights on it, all these

weights must correspond to vertices of ∆. As such, the toric components of the

discriminant in F correspond to rays in the secondary fan with either no weights

on them, 1 weight (corresponding to a vertex of ∆) or at least two weights.

We’ll see in §5.1 that, if a chamber C contains in its closure a ray indexing a

toric divisor in the FIPS, the phase XC has smaller than expected Picard rank –

that is, < Rk(L∨). We now consider the extreme case of this when we have an affine

orbifold phase (whose Picard group is therefore finite). We’ll see that all of the

toric divisors near such a phase are in the FIPS.

The affine orbifold case: Suppose we have a linear toric VGIT with a phase (with

corresponding chamber C in the secondary fan) which is an orbifold, [Cm /G] say
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where G ⊂ SLm(C) is a finite abelian group. We’ll see an explicit example of this

situation with the Triangle VGIT in §9.

Then, as the fan for [Cm /G] consists of m linearly independent rays, ∆ has to

be an (m − 1)-simplex (which we can assume has vertices niei for i = 1, . . . ,m for

some ni ∈ Z>0). It follows that G, which is the kernel of the ray map tensored

with C∗, is isomorphic to ∏m
i=1 µni ⊂ (C∗)m. If there are n rays in ∆ which are

not vertices, then Rk(L∨) = n. By definition, the FIPS is an open subset inside

[Cn+m /TM ] (where the coordinate ai on Cn+m corresponds to the ray ωi in ∆).

As the toric components of the discriminant inside [Cn+m /TM ] are precisely

{ai = 0} for i corresponding to the m vertices of ∆, in the FIPS ai ≠ 0 for such i

and we can therefore use the TM -action to set the m vertex coordinates to 1. For

the vertex niei, this is ambiguous up to µni and hence we can describe the FIPS

as the complement of the non-toric parts of the discriminant inside [Cn /G] where

G ⊂ (C∗)m acts by reparametrisation.

Since the non-toric parts of the discriminant avoid the torus fixed points in F, it

follows that the torus fixed point 0 ∈ [Cn /G] is in the FIPS and one checks that this

corresponds to the chamber C associated with the orbifold phase. As the non-toric

parts of the discriminant are not toric divisors, we see that, in the orbifold case,

all the toric divisors near the orbifold phase are in the FIPS. This affine toric DM

stack [Cn /G] which here partially compactifies the FIPS is a special case of the

moduli stack VA of full sections from [16], §A.4.

3.5. The VGIT associated to a face. Let Γ be a face of ∆ and suppose nΓ rays

of the VGIT lie on Γ. Let LΓ ⊂ L be the lattice of relations between these rays.

Then the rays in Γ define another Calabi–Yau VGIT – the VGIT on Γ – given by

the exact sequence:

0→ LΓ → ZnΓ → NΓ → 0

where NΓ ⊂ N is the sublattice generated by the rays in Γ.

In this section, we describe how the VGIT on Γ fits with the original VGIT. This

leads naturally to the Higgs VGIT on Γ. We also discuss in Lemma 3.47 a handy

bijection between minimal faces and certain subspaces in L∨R, which will be used in

the proof of Proposition 8.14.

We begin by noting that the exact sequence defining the VGIT on Γ includes

into the original exact sequence (where A is surjective by assumption) to give the

following commutative diagram with exact rows and columns where q has finite

cokernel (here the bottom row can just be defined as the cokernel of the inclusions
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above them). Note that N ′
Γ can have torsion.

(2)

0 0 0

0 LΓ ZnΓ NΓ 0

0 L Zn N 0

0 L′Γ Zn−nΓ N ′
Γ

0 0 0

i

A

r

q

If we want to think in terms of weights, we need to dualise this diagram. Setting

MΓ ∶= N∨
Γ = Hom(NΓ,Z),M ′

Γ ∶= (N ′
Γ)∨ and noting that L, LΓ and L′Γ are all lattices,

we get the following commutative diagram with exact rows and columns where Q2

and i∨ have finite cokernel:

(3)

0 0 0

0 M ′
Γ (Zn−nΓ)∨ (L′Γ)∨

0 M (Zn)∨ L∨ 0

0 MΓ (ZnΓ)∨ L∨Γ 0

0 0

j Q2

i∨

Q

p

Q1

Borrowing our terminology from the physics’ literature (see [4]), we define:

Definition 3.43. The Higgs VGIT on a face Γ is the VGIT with weights Q2

Remark 3.44. As remarked in §2, the Higgs VGIT on Γ is “complementary” to the

VGIT on Γ in the sense that it uses only the complementary set of weights. These

correspond to rays ωi not lying on Γ.

It follows from (3) that Im(Q2) is the (co-finite) sub-lattice of (L′Γ)∨ generated

by the complementary weights. As such, (L′Γ)∨R is the linear subspace spanned by

the complementary weights.

Remark 3.45. It is important to note that, unlike the VGIT on Γ, the Higgs VGIT

on Γ is not necessarily Calabi–Yau. In particular, some phases may not be minimal

– that is, their canonical divisor may not be nef. We shall explore this much more

in §10.
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Remark 3.46. The definition of the Higgs VGIT on Γ did not use the fact that Γ

lives in the height 1 slice H or is a face of ∆. So more generally, if we have any

linear toric VGIT and Γ is a linear subspace in NR spanned by the rays on it, then

we can define the Higgs VGIT as above.

When Γ is a minimal face, the corresponding subspace (L′Γ)∨R ⊂ L∨R of comple-

mentary weights has some special properties which we’ll now see characterise it

completely.

Lemma 3.47. The map Γ↦ (L′Γ)∨R gives a bijection between:

{
Minimal

faces of ∆
}↔ {

Proper subspaces of L∨R spanned by the weights lying on

them and with a positive relation between all these weights
}

Remark 3.48. Here by a proper subspace we mean a subspace that is not all of L∨R.

A positive relation is a relation ∑ajβj = 0 where all aj ∈ Z>0.

Proof. We first check that (L′Γ)∨R has these properties. Certainly (L′Γ)∨R = kerpR

(see (3)) is proper as LΓ ≠ 0 by minimality of Γ. Note that Remark 3.4 tells us that

if Γ is minimal, then Q1 has no zero weights. By (3), this is the same as saying that

the only weights which lie on (L′Γ)∨R are complementary weights. Moreover, by the

top row of (3), (L′Γ)∨R is spanned by the complementary weights and hence by all

the weights lying on it. Since Γ is a face, there is m ∈M ′
Γ such that m(r(ωi)) > 0

for all ωi not lying on Γ. As such, Q2 ○ j(m) gives a positive relation between all

the complementary weights and hence all the weights on (L′Γ)∨R.

For injectivity, since Γ is minimal, the weights lying on (L′Γ)∨R are precisely the

complementary weights. As such, if we know (L′Γ)∨R then we can recover the set of

complementary weights and hence the set of rays on Γ. Taking the affine span of

the corresponding ωi in ∆ recovers Γ so this map is injective.

For surjectivity, take a proper subspace H of L∨R with the properties above. Then

set (L′Γ)∨ ∶= H ∩ L∨ and let Q2 ∶ (Zn
′
)∨ → (L′Γ)∨ be the set of all weights lying on

H. Then Q2 has only finite cokernel and we set M ′
Γ ∶= kerQ2. Embedding this

into the short exact sequences of weights on L∨ and taking the cokernel gives a

commutative diagram of abelian groups similar to (3) which is exact everywhere

apart from possibly the bottom left and top right corners and here the kernels

and cokernels are finite. By definition of Q2, the basis vectors in (Zn
′
)∨ index all

weights in (L′Γ)∨R. As such, the map Q1 ∶ (Zn−n
′
)∨ → L∨Γ has no zero weights.

Dualising this square over R gives a subspace (NΓ)R ⊂ NR which is generated by

the rays indexed by basis vectors in Zn−n
′
. Intersecting (NΓ)R with ∆ gives a slice

Γ ⊂ ∆. Since there is a positive relation between all the weights lying on (L′Γ)∨,

by the short exact sequence involving Q2, this relation is of the form Q2 ○ j(m) for

some m ∈M ′
Γ such that j(m) ∈ Nn′ . Viewing m as a function on NR which vanishes

on Γ and is positive on all the rays indexed by Zn
′

shows that Γ is in fact a face of

∆ and Zn
′
→ N ′

Γ has no zero weights. Moreover, by Remark 3.4, as Q1 has no zero

weights, Γ is a minimal face.
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Finally we need to check that H agrees with (L′Γ)∨R for this face Γ. Since we

constructed the VGIT on Γ by taking all the rays on Γ, this follows from the fact

that Zn
′
→ N ′

Γ has no zero weights – that is, the rays indexed by Zn−n
′

are the only

rays on Γ. �

Remark 3.49. We note that, amongst all proper subspaces H ⊂ L∨R spanned by the

weights lying on them (which here we call βj for j = 1,⋯, k) , those with a positive

relation between all the weights can be characterised by Cone({βj}) = H. To see

this, note that if ∑ajβj = 0 is a positive relation (so aj are all positive integers)

then, for any i, −aiβi = ∑j≠i ajβj . So −βi ∈ Cone({βj}) for all i. Since the βi span

H, this gives that Cone({βj}) = H. Conversely, if Cone({βj}) = H, then, for any

i, −βi = ∑ajβj where aj ≥ 0 are rational. Rearranging this tells us that, for any i,

we have a relation ∑ajβj = 0 where aj ≥ 0 and ai = 1. Summing these together for

all i gives the desired positive relation between all the weights on H.

Using this characterisation, we observe that the subspaces from Lemma 3.47

necessarily have −∑j∣βj∈H βj ∈ Cone({βj}). By Theorem 3.13, this means that the

canonical divisor of the Higgs VGIT lies in the support of its secondary fan and

hence the Higgs phase is non-empty.

Remark 3.50. We observe that a polyhedral subdivision of (∆,A) induces a poly-

hedral subdivision of (Γ,A∩Γ) for any face Γ of ∆. Moreover, from the description

of the secondary fan in Remark 3.15 and the diagram (3), it follows that the natural

quotient map p ∶ L∨ → L∨Γ from (3) is actually a map of stacky secondary fans.

Remark 3.7 tells us that ∇Γ ∩ TL∨ is the pullback of ∇A∩Γ ∩ TL∨
Γ

under p ⊗ C∗.

Then it follows that ∇Γ ⊂ F is actually the pullback of ∇A∩Γ from the secondary

stack of the VGIT on Γ.

3.6. Horn uniformisation. First we recall ([20], Ch. 9, §3A) that the logarithmic

Gauss map γZ ∶ Z ⇢ Pm−1 of an irreducible hypersurface Z ⊂ (C∗)m is the rational

map taking a smooth point z ∈ Z to dl−1
z (TzZ) where lz is multiplication by z in

(C∗)m. Then we have:

Definition/Theorem 3.51. ([20], Ch. 9, 3.C) The Horn uniformisation is the

rational map with image ∇pr given by:

P(LC)⇢ ∇pr ⊂ TL∨ = Hom(L,C∗)

λ↦ (l ↦
n

∏
i=1

⟨βi, λ⟩⟨βi,l⟩)

In the case when ∇pr is a hypersurface, this is a birational map with inverse given

by γ∇pr .

If we pick a basis for L and corresponding coordinates λ1,⋯, λk on LC, then

(identifying TL∨ ≅ (C∗)k) we may rewrite the Horn uniformisation as:
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Pk−1 ⇢ ∇pr ⊂ (C∗)k

[λ1,⋯, λk]↦ (
n

∏
j=1

(λ1βj1 +⋯ + λkβjk)βji)i=1,⋯,k(4)

where βji are the components of the weights βj ∈ L∨ ≅ Zk in the dual basis.

4. Windows

We now briefly recall the theory of grade restriction windows in the context of

toric VGIT with TL⟳ Cn. For more details, we refer the reader to Ballard–Favero–

Katzarkov [6] and Halpern-Leistner [22]. Here we mainly follow the exposition and

notation given in Halpern-Leistner–Shipman [25], §2.

Recalling Definition 3.20, we see that all GIT quotients Xβ in the toric VGIT are

open substacks inside the Artin stack X0 = [Cn /TL] and we denote the inclusions

by i. Kempf and Ness showed how to equivariantly stratify the unstable locus –

nowadays this is called the Kempf-Ness stratification – by locally-closed substacks

Yλi ⊂ X0 called “blades”. As such, Xβ = X0/(⋃ki=1 Yλi). These blades are indexed

by λi ∈ L for i = 1,⋯, k which are an ordered list of “destabilising 1-PS” determined

by the choice of β ∈ L∨ (see the above references for details).

Definition 4.1. To any 1-PS λ, the blade Yλ ∶= {x ∈X0∣ limt→0(λ(t).x) exists in X0}.

Remark 4.2. If the group acting were not abelian, we would need to run the above

procedure on a maximal torus and then take the G-orbits of the blades Yλ.

Definition 4.3. For λ ∈ L, we let Zλ ∶= [(Cn)λ/TL] ⊂ X0 be the Artin quotient

stack of the λ-fixed locus (Cn)λ inside Cn by TL and Z ′λ ∶= [(Cn)λ/(TL/Im(λ))]
be the Artin quotient stack of the same locus by TL/Im(λ), which still acts as λ

acts trivially on (Cn)λ.

Definition 4.4. Db(Zλ)w is the full subcategory of Db(Zλ) comprising of objects

with λ-weight w. For F ● ∈Db(Zλ), (F ●)w denotes the λ-weight w summand of F ●.

The blade and fixed locus fit into the following diagram, where i is the inclusion

and π(x) = limt→0(λ(t).x).

Yλ X0

Zλ

π

i

As X0 is smooth, π is then a locally trivial bundle of affine spaces over Zλ.

Definition 4.5. Given a 1-PS λ ∈ L, we define κλ ∶= det(NYλ/Cn) ∈ Pic(Yλ) and

ηλ ∶= wtλ(κ∨λ∣Zλ) ∈ Z

With these definitions, one can show:
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Lemma 4.6. ([22], Corollary 3.28) iλ,w ∶= i∗ ○ π∗ ∶ Db(Zλ)w → Db(X0) is fully

faithful. Its left adjoint iLλ,w(F ●) = (F ●∣Zλ)w and its right adjoint iRλ,w(F ●) =
(F ●∣Zλ ⊗ κλ∣Zλ)w.

Here, as always, ∣Zλ is derived restriction to Zλ and we note that iλ,w and

iλ−1,−w are different functors, despite their source category being the same. When

λ is obvious from the context, we abbreviate iλ,w to iw.

Definition 4.7. The image of iλ,w is denoted by Aλw ⊂ Db(X0). If A ⊂ Db(Zλ)w
is a full subcategory, Aλw ⊂Db(X0) denotes its image under iλ,w.

Definition 4.8. The grade restriction window Wλ(w) ⊂ Db(X0) defined by a 1-

PS λ ∈ L and w ∈ Z is the full subcategory with objects F ● such that, for all i,

wtλ(Hi(F ●)∣Zλ) ∈ [w,w + ηλ − 1]. This numerical condition on F ● is called the

grade restriction rule (for λ). We denote the inclusion Wλ(w) ⊂Db(X0) by j.

Then the foundational result of the theory of windows says:

Theorem 4.9. ([22], Theorem 2.10) Restriction i∗ ○ j ∶Wλ(w)→Db(X0/Yλ) is an

equivalence of categories.

If we want to make further deletions, we can set X0 ∶= X0/Yλ and run the same

argument again. Continuing inductively, if for each destabilising 1-PS λi appearing

in the Kempf-Ness stratification for Xβ we pick wi ∈ Z, we may define:

Definition 4.10. The full subcategory Wλ(w) ⊂Db(X0) (call this inclusion j) con-

sists of objects F ● such that (for all i = 1, . . . , k and m) wtλi(Hm(F ●)∣Zλi /⋃l<i Yλl ) ∈
[wi,wi + ηλi − 1]

Remark 4.11. This is a fiddly definition because we need to work with the locally

closed subsets Zλi/⋃l<i Yλl . As such, a priori Wλ(w) depends on the ordering of

our 1-PS λi. We’ll see in §4.2 that magic windows (when they exist) give a much

simpler description of Wλ(w) (for certain values of w), which in particular shows

that these categories don’t depend on the ordering of the 1-PS.

Then applying Theorem 4.9 iteratively gives:

Theorem 4.12. ([22], Theorem 2.10) Restriction i∗ ○ j ∶ Wλ(w) → Db(Xβ) is an

equivalence of categories.

Remark 4.13. One can show that i∗ ∶ Db(X0) → Db(Xβ) is essentially surjective

for any β ∈ L∨. Since we consider linear toric VGITs, Db(X0) is generated by line

bundles. It follows that Db(Xβ) is generated by line bundles for all β, which makes

these derived categories quite combinatorial objects.

Definition 4.14. Cλw is the full subcategory of Db(X0) with objects F ● such that,

for all i, wtλ(Hi(F ●)∣Zλ) ∈ [w,w + ηλ]

It will be useful later to note that the inclusion Wλ(w) ⊂ Cλw is admissible. In

fact, we have:
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Theorem 4.15. ([22], Theorem 2.10) There is a semi-orthogonal decomposition

Cλw = ⟨Wλ(w),Aλw⟩ = ⟨Aλw,Wλ(w + 1)⟩.

We now focus on crossing the wall W between two neighbouring chambers C±,

following [25], §3. Denote the two phases by X+ and X− and by λ = λC−,C+ ∈ L the

primitive normal vector to W , which points towards C−. Then we can arrange that

there are the same number of destabilising 1-PS λ+i for X+ as there are λ−i for X−

(call this number k). Moreover we can assume that λ+i = λ−i for i = 1,⋯, k − 1 (call

this common 1-PS λi) and that λ+k = (λ−k)−1 = λ. If we let Xλ
0 = X0/(⋃k−1

i=1 Yλi),
then X± =Xλ

0 /Yλ± . We denote the inclusions X± ⊂Xλ
0 by i±.

The theory of windows outlined above works more generally with any smooth

projective-over-affine variety in place of Cn and so we get windows Wλ±(w) ⊂
Db(Xλ

0 ) for Db(X±). If wtλω
∨
X ∣Zλ = 0, then one can check that ηλ = ηλ−1 and,

denoting this common value by η, we have that Wλ(w) =Wλ−1(−w − η + 1). Thus

it follows that:

Corollary 4.16. ([22], Proposition 4.5) Suppose wtλω
∨
X ∣Zλ = 0. Then i∗± ∶Wλ(w)→

Db(X±) are both equivalences.

Remark 4.17. If we let Zλ ∶= Zλ ∩ Xλ
0 , we also get a fully faithful functor iw ∶

Db(Zλ)w →Db(Xλ
0 ) given by restricting the functor iw from Lemma 4.6. Moreover,

the functor Fw ∶= i∗−○iw ∶Db(Zλ)w →Db(X−) turns out to be spherical (see [25, 32]).

We observe that the assumption of Corollary 4.16 always holds when our VGIT

is Calabi–Yau and hence we get equivalences between the derived categories of

neighbouring phases.

Definition 4.18. For a Calabi–Yau VGIT, the equivalences (for any w ∈ Z) φw ∶=
i∗+ ○ (i∗−)−1 ∶ Db(X−) → Wλ−1(−w − η + 1) = Wλ(w) → Db(X+) are called window

equivalences.

The autoequivalences (for any w ∈ Z) ψw ∶= φ−1
w ○ φw+1 ∶ Db(X−) → Db(X−) are

called window shifts.

Since the secondary fan of a Calabi–Yau VGIT is connected (in fact, its support

is L∨R), the theorem implies that all phases of a Calabi–Yau VGIT are derived

equivalent via window equivalences.

Remark 4.19. The window shift ψw based at a phase X− can be described more

geometrically (see [25, 32]) as the twist about the spherical functor Fw ∶Db(Zλ)w →
Db(X−) from Remark 4.17.

When we’re not in the Calabi–Yau setting, we don’t expect to get equivalences

between all the phases of our VGIT. Nonetheless, we can still use the theory of

windows to describe how the derived categories of the phases on either side of a

wall W differ (see [5, 6]). Suppose we pick λ ∈ L to be primitive normal to W
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such that µλ ∶= ⟨λ,−K⟩ ≤ 0, where −K = ∑i βi. We call the phase associated to the

chamber C with ⟨λ,C⟩ ≤ 0 X+, the other phase X− and the quotient on the wall

X0 (this is intentionally ambiguous when µλ = 0). Finally we let Z ′
λ be the λ-fixed

locus in X0 (forgetting the trivial λ action).

Remark 4.20. Recall that a phase X is minimal if KX is nef. So here X− is the

“more minimal” phase and X+ is the “less minimal” phase.

The following theorem is just the extension of Corollary 4.16 to the case when

wtλω
∨
X ∣Zλ ≠ 0. By our choice of λ, ηλ ≥ ηλ−1 as µλ = ηλ−1 −ηλ ≤ 0. As such, φ−w−ηλ+1

using the window Wλ−1(w) ⊂Wλ(−w − ηλ + 1) for X− still gives a full embedding.

Theorem 4.21 ([5], Theorem 3.1.4). For any w ∈ Z, there are full embeddings

φ−w−ηλ+1 ∶Db(X−)→Db(X+) and Fj ∶Db(Zλ−1)j →Db(X+) for j = w, . . . ,w−µλ−1

such that ⟨Imφ−w−ηλ+1, ImFw, . . . , ImFw−µλ−1⟩ is an SOD of Db(X+) where Fj =
i∗+ ○ iλ−1,j (c.f. Remark 4.17).

Remark 4.22. This theorem follows from a mild generalisation of Theorem 4.15.

Namely, if Wλ(−w − ηλ + 1) ⊂ Db(X0) is a window for Db(X+) (of width ηλ), then

there is an SOD Wλ(−w−ηλ+1) = ⟨Wλ−1(w),Aλ−1

w ,⋯,Aλ−1

w−µλ−1⟩, where Wλ−1(w) is a

window for Db(X−) (of width ηλ−1) and Aλ
−1

i is a copy of Db(Zλ−1)i. Then Theorem

4.12 tells us that restricting from Wλ(−w−ηλ +1) to Db(X+) is an equivalence and

restricting this SOD gives the functors and SOD described in the theorem.

From Theorem 4.15, we see that

RAλ−1
w

(Wλ−1(w)) =Wλ−1(w + 1) =Wλ−1(w)⊗OX0(β)

where β has λ−1-weight 1. Restricting this to X+ gives that RImFw(Imφ−w−ηλ+1) =
Imφ−w−ηλ+1(β). This property will be very useful in §6.2 where we will refer to it

as the window property of Imφ−w−ηλ+1.

Example 4.23. We consider the simplest case of this when X0 is a rank 1 VGIT

(so X0 is of the form [Cn /C∗]) with no zero weights. Here λ is the primitive 1-PS

pointing towards the minimal phase X− and we denote by O(j) the line bundle

with λ−1-weight j. We observe that µλ = −∣∑j βj ∣ = ηλ−1 − ηλ. Then Yλ± = {xi = 0 ∣
⟨βi, λ±⟩ < 0} and X± = X0/Yλ± can be described geometrically as a vector bundle

on a weighted projective space (which is given by Yλ∓ ∩X± = Yλ∓/{0}).

Then Theorem 4.21 gives an SOD of Db(X+) in terms of Db(X−) and −µλ copies

of Db(Z ′
λ). As there are no zero weights, Z ′

λ = 0 and so Db(Zλ−1)j = ⟨OZλ−1 (j)⟩.
When µλ < 0, it follows that ImFj is generated by an exceptional object in

Db(X+), which is explicitly given by OYλ−1 /{0}(j). By Remark 4.13 we know

Wλ(−w − ηλ + 1) = ⟨OX0(w),⋯,OX0(w + ηλ − 1)⟩

and similarly Wλ−1(w) = ⟨OX0(w),⋯,OX0(w + ηλ−1 − 1)⟩.
Thus Imφ−w−ηλ+1 = ⟨OX+(w),⋯,OX+(w + ηλ−1 − 1)⟩ and our SOD is

Db(X+) = ⟨OX+(w),⋯,OX+(w + ηλ−1 − 1),OYλ−1 /{0}(w),⋯,OYλ−1 /{0}(w − µλ − 1)⟩
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4.1. Fractional windows. We now describe how to generalise the notion of win-

dows to fractional windows, as introduced mathematically in [25]. This will give us

an extra source of equivalences between neighbouring phases of our VGIT which

we’ll use in §6.2 to construct a (partial) fundamental group action when the FIPS

is 2-dimensional.

Fix a 1-PS λ ∈ L, w ∈ Z and a semi-orthogonal decomposition ⟨A,B⟩ =Db(Zλ)w

Definition 4.24. The fractional window Fwλ (⟨A,B⟩) ⊂ Db(X0) associated to this

data is the full subcategory with objects F ● such that, for all i:

● wtλ(Hi(F ●)∣Zλ) ∈ [w,w + η]
● HomZλ(wtwHi(F ●)∣Zλ ,A) = 0

● HomZλ(B,wtw(Hi(F ●)∣Zλ ⊗ κλ∣Zλ)) = 0

This (partially numerical) condition on F ● is called the fractional grade restriction

rule (for λ and ⟨A,B⟩).

Let’s now consider crossing a wall between two neighbouring phases X±. Our

goal is to introduce fractional window equivalences in analogy to the usual window

equivalences in Definition 4.18. As before, let λ ∈ L be the primitive normal vector

to the wall between the corresponding chambers pointing towards the X− phase.

We denote the quotient associated to the linearisation on the wall by X0 and so

X± =X0/Yλ± (with the inclusion in X0 denoted i±).

If wtλω
∨
X ∣Zλ = 0, then ηλ = ηλ−1 and so, since Fwλ (⟨A,B⟩) ⊂ Db(X0) lives in λ-

weights [w,w+η], F −w−η
λ−1 (⟨C,D⟩) has these same λ-weights, for any semi-orthogonal

decomposition ⟨C,D⟩ = Db(Zλ−1)−w−η. When ⟨C,D⟩ is the “dual” SOD, we can do

better:

Lemma 4.25. Suppose ω∨X ∣Zλ ≅ OZλ and define C′ ∶= C ⊗ κ∨λ∣Zλ . If at least one

of A,B is proper (that is, all morphisms are finite-dimensional vector spaces), then

B∨ ∶= B′ ⊗ ωZλ , A∨ = A′ gives an SOD of Db(Zλ−1)−w−η = Db(Zλ)w+η such that

F −w−η
λ−1 (⟨B∨,A∨⟩) = Fwλ (⟨A,B⟩). Moreover, i∗± ∶ Fwλ (⟨A,B⟩) → Db(X±) are both

equivalences.

As before, in the Calabi–Yau setting, this allows us to construct equivalences.

Definition 4.26. For a Calabi–Yau VGIT, the equivalences (for any w ∈ Z)

χw ∶= i∗+ ○ (i∗−)−1 ∶ Db(X−) → F −w−η
λ−1 (⟨B∨,A∨⟩) = Fwλ (⟨A,B⟩) → Db(X+) are called

fractional window equivalences.

In the rest of this section, we recall some facts about how (fractional) windows in

Db(X0) behave under mutation. We shall use this in §6.2 (and only there) to help

prove certain “monodromy relations” hold between our fractional window equiva-

lences. Recalling the notation in Definition 4.7, we have the following extension of

Theorem 4.15:
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Theorem 4.27. ([25], Lemma 4.10) There is an SOD Cλw = ⟨Aλw, Fwλ (⟨A,B⟩),Bλw⟩
and hence Fwλ (⟨A,B⟩) = RAλw(Wλ(w)) = LBλw(Wλ(w + 1)) (where L/R denote the

left/right mutation functors respectively). Moreover, the following diagram com-

mutes:

Wλ(w) Fwλ (⟨A,B⟩)

Db(X+)

RAλw

i∗+ i∗+

More generally, if we have an SOD Db(Zλ)w = ⟨E1, . . . ,En⟩ we can consider, for

each i = 1, . . . , n, the subcategory Ui of Db(Zλ)w generated by the first i pieces of

the above SOD and the subcategory Vi generated by the remaining pieces. These

then give us fractional windows Fwλ (⟨Ui,Vi⟩) for each i and it follows from Theorem

4.27 that:

Corollary 4.28. The following diagram commutes:

Fwλ (⟨Ui,Vi⟩) Fwλ (⟨Ui+1,Vi+1⟩)

Db(X+)

R
Eλ
i+1

i∗+ i∗+

where, for notational simplicity, Eλi+1 ∶= iλ,w(Ei+1).

If we consider again a wall-crossing between two neighbouring phases X± as be-

fore, we define A+ ∶= iλ,−w−η(A) and A− ∶= iλ−1,w(A). Then there is also a dual ver-

sion of Corollary 4.28. Namely, if we have an SOD Db(Zλ)w = ⟨E1, . . . ,En⟩, we can

consider the (left) dual SOD Db(Zλ)w = ⟨Fn, . . . , F1⟩ where Fi ∶= L⟨E1,...,Ei−1⟩(Ei).
Note that F1 = E1 and Fn = En ⊗ ωZλ . Tensoring with κ∨λ∣Zλ , we get an SOD

Db(Zλ−1)−w−η = ⟨F ′
n, . . . , F

′
1⟩ and we call Ûi the subcategory of Db(Zλ−1)−w−η gener-

ated by the first i pieces of the SOD and V̂i the subcategory generated by the remain-

ing pieces. Note that Ûi = ⟨E′
n−i+1,⋯,E′

n⟩⊗ ωZλ = V ′n−i ⊗ ωZλ and V̂i = U ′n−i. Then

Lemma 4.25 gives that Fwλ (⟨Ui,Vi⟩) = F −w−η
λ−1 (⟨V ′n−i ⊗ωZλ ,U ′n−i⟩) = F

−w−η
λ−1 (⟨Ûi, V̂i⟩)

for all i and, from Corollary 4.28, we get:

Corollary 4.29. The following diagram commutes:

Fwλ (⟨Ui+1,Vi+1⟩) Fwλ (⟨Ui,Vi⟩)

Db(X−)

RF ′−
i+1

i∗− i∗−

4.2. Magic windows. In this section, we define magic windows and see that they

naturally lead to relations between window equivalences coming from different walls.

This will be used extensively to construct our fundamental group representation for

the non-quasi-symmetric examples in §7.2, §7.3 and §9. A good reference for this

material is [18], §5.2 .
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As we saw in Remark 4.11, the actual definition for the window W β
λ (w) for a

given phase Xβ is given by imposing the grade restriction rule on the locally closed

pieces Zλi/⋃l<i Yλl for each destabilising 1-PS λi for that phase. Here we have

added a β to the notation just to stress that this data depends upon the phase we

are considering. More näıvely, we could just impose the grade restriction rules on

the fixed loci Zλ for all 1-PS λ defining walls in the secondary fan.

Definition 4.30. Let MW (w) ⊂ Db([Cn /TL]) be the full subcategory generated

by all line bundlesO(β) (for β ∈ L∨) which satisfy the grade restriction rule (starting

at wλ) for all walls W in the secondary fan. Explicitly, for each such W , if one of

its primitive normal vectors is λ ∈ L, we require that ⟨β,λ⟩ ∈ [wλ,wλ + ηλ − 1].

Then it follows that MW (w) ⊂W β
λ (w) for any β in a chamber of the secondary

fan. Hence, by Corollary 4.16, restriction i∗ ∶MW (w)→Db(Xβ) is fully faithful for

any phase. If this functor is essentially surjective, it follows that MW (w) =W β
λ (w)

for all phases and so these windows admit a particularly nice description. We give

this situation a name:

Definition 4.31. MW (w) is a magic window if it generates (upon restriction) the

derived category of one of the phases.

Remark 4.32. For an explicit example of magic windows, see the proof of Theorem

7.27 in §7.3.

Remark 4.33. We note that if MW (w) is a magic window, then so is MW (w) ⊗
O(β) =MW (w+⟨β,λ⟩) for any β ∈ L∨. However, up to tensoring with line bundles,

there are only finitely many magic windows.

The existence of magic windows requires a delicate balancing of the wλ for all

normal vectors λ, as there are usually more than Rk(L∨) destabilising 1-PS and so

we are imposing more than Rk(L∨) inequalities on a Rk(L∨) space. As such, if the

wλ are not balanced we end up with no (or not enough) line bundles in MW (w)
to generate the phases.

In fact, even with such careful choices, magic windows are not guaranteed to

exist.

Example 4.34. In the Octahedron VGIT (in §5.3) there are 3 (up to inverses)

primitive 1-PS with non-trivial fixed loci – that is, λ = (1,0), (0,1) and (1,−1) –

and all have ηλ = 2. Imposing the 3 grade restriction rules for these λ, we see

that any category of the form MW (w) has at most 3 line bundles in it. But we’ll

see in §5.3 that the phases are all isomorphic to Tot OP1×P1(−1,−1)⊕2 and so have

rank 4 algebraic K0-theory. As such, purely on K0 grounds, there can be no magic

windows.

In the Octahedron VGIT, we’ll see (§7.2) that, although there are no magic

windows, there are in fact fractional magic windows:
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Definition 4.35. Suppose we have picked an SOD of Db(Zλ)wλ = ⟨Aλ,Bλ⟩ for

each λ corresponding to a wall in the secondary fan. Let FW (w, ⟨A∗,B∗⟩) ⊂
Db([Cn /TL]) be the full subcategory generated by imposing fractional grade re-

striction rules (starting at wλ) with respect to these SODs for each λ. We say that

FW (w, ⟨A∗,B∗⟩) is a fractional magic window if this category generates (upon

restriction) the derived category of one of the phases.

Remark 4.36. For both magic and fractional magic windows, generating one of the

phases is equivalent (by Corollary 4.16) to generating all of the phases. Note also

that, if we choose the trivial SOD of Db(Zλ)wλ in the definition of a fractional

magic window, this imposes the usual grade restriction rule. Hence magic windows

are a special class of fractional magic windows.

If we push Example 4.34 a little further, we can construct examples where there

aren’t even any fractional magic windows.

Example 4.37. For n > 2, consider the VGIT with weights Q ∶ Z3n → Z2 = L∨:

β1, . . . , βn = (1,0), βn+1, . . . , β2n = (0,1), β2n+1, . . . , β3n = (−1,−1)

We note that the case n = 2 is exactly the Octahedron VGIT. As in the Octahedron,

there are still only 3 interesting 1-PS but now η = n for all these. If we impose the

weight condition in all 3 fractional grade restriction rules, then the number of line

bundles satisfying these grows slower than n2 as function of n. But the phases of

this VGIT are isomorphic to Tot OPn−1×Pn−1(−1,−1)⊕n and so have algebraic K0-

theory of rank n2. As such, for n sufficiently large, none of these examples can have

fractional magic windows for purely numerical reasons.

Remark 4.38. There is no reason we couldn’t widen the definition of fractional magic

window by imposing fractional grade restriction rules with wider weight conditions

but more orthogonality. However, we shall not need this here so will stick with

Definition 4.35.

We have seen that for a magic window restriction gives an equivalence MW (w) ≅
Db(XC) for any chamber C. Moreover, because of the weight condition, restriction

from MW (w) to any phase factors through Wλ(wλ) for any λ of interest. As such,

we can interpret any window equivalence φλw (here the λ just keeps track of the

wall) as lifting into MW (w) (instead of Wλ(w)) and then restricting to the phase

on the other side of the wall. Therefore we get a commutative diagram of functors,

which is shown schematically in Figure 6, where all arrows denote restriction (and

are equivalences) and λ1, λ2 ∈ L define the x− and y−axis respectively.

The reason we are interested in magic windows is that they imply certain rela-

tions between window equivalences coming from different walls. To see this, pick

any starting chamber C. Then, if we pick a sequence of neighbouring chambers

(separated by walls Wi with backward-pointing normals λi) ending back at C, the

magic window MW (w) gives the relation ∏i φ
λi
wλi

= IdDb(XC). We call this a magic
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Db(XC1) Db(XC2)

Db(XC3)Db(XC4)

MW (w)W−λ1(−w1 − ηλ1 + 1) Wλ1(w1)

Wλ2(w2)

W−λ2(−w2 − ηλ2 + 1)

Figure 6. Commutative diagram of restrictions from a magic window

window relation. For example, in Figure 6, if C = C1 and we follow a clockwise

loop, then we get the relation φλ2
w2

○ φλ1
w1

○ φ−λ2

−w2−ηλ2
+1 ○ φ

−λ1

−w1−ηλ1
+1 = IdDb(XC1

).

So a magic window gives a collection of relations, one for each loop of chambers.

It’s often convenient to think about this in terms of the secondary polytope Σ(A)
where such a loop corresponds exactly a loop in the 1-skeleton of Σ(A). Since

any such element can be factorised (up to changing basepoints) into loops around

the 2-dimensional faces of Σ(A) and changing basepoints does not introduce any

more relations, we see that a magic window gives precisely one relation for each

2-dimensional face of Σ(A).
Therefore, if we fix such a face and try to implement relations on it, a magic

window for the whole VGIT (sometimes called a global magic window) is no more

useful than a magic window for the VGIT near that face. This is particularly useful

as the latter might exist even when the former don’t. Nonetheless, as Example 4.34

shows, magic windows for the VGIT on a given 2-dimensional face still do not have

to exist.

Remark 4.39. In a completely analogous way, fractional magic windows give rise

to relations between fractional window equivalences coming from different walls.

5. At large radius

In this section, we describe certain regions of the FIPS of the Calabi–Yau VGIT

defined by the rays A ⊂ N . For these regions we can (at least partially) understand

the topology and this allows us in Proposition 5.20 to write down a representation

on certain paths in such regions, in an analogous way to the 1d case discussed in

§2.1.

The simplest regions are (analytic) open neighbourhoods VC of the large radius

limits pC – that is, torus fixed points in F – for each chamber C. We call these large

radius regions. In §5.1, we describe how loops α ∈ π1(VC) correspond canonically

to line bundles O(β) on XC and hence to a canonical action of π1(VC), given by

tensoring with O(β).
We then move on to curves at large radius – that is, torus invariant curves in

F. If W is the corresponding wall W in the secondary fan (which forms a wall

of two chambers, C1 and C2 say), we denote this curve by Z(W ) ⊂ F. In §5.2,
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we describe an (analytic) open neighbourhood VW of Z(W ) in the FIPS called

the near large radius region associated to W (see Definition 5.6). VW comes with

a natural fibration structure which will enable us to simplify the description of

π1(VW ,{qC1 , qC2}) – the so-called near large radius groupoid.

We then move on to describe a subgroupoid of the near large radius groupoid,

called the large radius groupoid GWLR (see Definition 5.12) and a presentation which

is analogous to the presentation in §2 of the fundamental groupoid of a 1d FIPS.

By analogy with the 1d case, this allows us in Proposition 5.20 to use window

equivalences (see Definition 4.18) to construct a representation ρW of the large

radius groupoid for any wall W . In §5.3, to help the reader, we describe explicitly

all these regions and their topology for the Octahedron VGIT.

5.1. Large radius regions. Recall that, when the FIPS was 1d (see §2.1), toric

loops α near a large radius limit pC (for C a chamber of the secondary fan) corre-

sponded canonically to line bundles O(β) on the phase XC .

To define such loops more generally, fix a chamber C and let U ′
C ⊂ F be the toric

(Zariski) open neighbourhood of pC in F. By applying [20], Ch. 6, Theorem 1.12

to the set of monomials of EA and using Theorem 3.18 to observe that the convex

hull of these monomials is the secondary polytope, we get:

Lemma 5.1. For each chamber C, there is an (analytic) open neighbourhood WC

of pC in F which is invariant under the compact torus TS
1

L∨ inside TL∨ and avoids

the non-toric parts of the discriminant. Moreover, this neighbourhood is a TS
1

L∨ -

equivariant deformation retract of U ′
C and this retract preserves the “real” subset

TR
L∨ ⊂ TL∨ . Finally, WC is disjoint from WC′ for all C ′ ≠ C.

Restricting WC to the FIPS, we have:

Definition 5.2. VC ∶=WC∩FIPS =WC/{Toric part of the discriminant} is called a

large radius region near pC and we define UC ∶= U ′
C/{Toric part of the discriminant}

So VC is an (analytic) open subset of the FIPS whose closure in F contains pC

and such that VC ⊂ UC is a deformation retract of the toric open subset UC which

preserves TR
L∨ . Moreover, VC is invariant under TS

1

L∨ and is disjoint from VC′ for

C ′ ≠ C.

In the case when all the toric divisors near pC are in the discriminant, VC is

a punctured polydisk – that is, of the form (D∗)k ⊂ TL∨ where k = Rk(L∨) =
dim(FIPS) – and so π1(VC) ≅ Zk ≅ L∨. In other cases, some of the toric divisors

containing pC may not be in the discriminant and/or VC may have an orbifold

locus. Then π1(VC) ≅ Zk
′
⊕G where G is a finite abelian group, k′ ≤ k and we

remember that, for us, π1 always denotes the orbifold fundamental group(oid).

Definition 5.3. We call a (base)point qC ∈ VC real if it lies in TR
L∨ .

Pick any real basepoint qC in VC . Because our deformation retract VC ⊂ UC
preserves the real locus, VC ∩ TR

L∨ ⊂ UC ∩ TR
L∨ = TR

L∨ ≅ Rk>0 is a deformation retract
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and hence VC ∩TR
L∨ is contractible. As such, there is a canonical homotopy class of

paths between any two real basepoints in VC and so π1(VC , qC) is independent of

the choice of qC . Hence we can state:

Lemma 5.4. There is a canonical isomorphism between Pic(XC) and π1(VC , qC)

Remark 5.5. The proof will show that π1(VC , qC) is generated by π1(TS
1

L∨ .qC , qC).
As such, we refer to elements of π1(VC , qC) as toric loops. Since π1(TS

1

L∨ .qC , qC) ≅
L∨, we denote the toric loop at C corresponding to β ∈ L∨ by αβC .

Proof. Recall that the general theory of toric linear VGIT tells us that Pic(XC) ≅
L∨/⟨βi ∣ i ∈ I⟩ where I ⊂ {1, . . . , n} indexes those ei ∈ Zn for which {ai = 0} is

contained in the unstable locus for XC . By the Hilbert-Mumford criterion, this

condition on i equates to weights βi for which there is a λ ∈ L such that C meets

the half-space Hλ = {⟨−, λ⟩ > 0} ⊂ L∨R and βi is the only weight for which ⟨βi, λ⟩ > 0.

On the other hand, as VC ⊂ UC is a deformation retract preserving the real

locus, π1(VC , qC) ≅ π1(UC , q′C) ≅ π1(UC , e) where q′C ∈ UC is some real basepoint.

The (orbifold) topology of toric varieties (see [14], Theorem 12.1.10) tells us that

π1(UC , e) ≅ L∨/⟨β(e∨j ) ∣ j ∈ J⟩ where J indexes the rays of the secondary fan in the

maximal cone C̄ whose associated toric divisors are not in the discriminant and β

is the map with the same name from the stacky secondary fan (see §3.4). By the

discussion immediately following Definition 3.11, j ∈ J indexes rays in the secondary

fan with a single weight βj on them such that the ray ωj ∈ N is not a vertex of ∆.

By Remark 3.36, β(e∨j ) = βj for such j and so π1(VC , qC) ≅ L∨/⟨βj ∣ j ∈ J⟩.
We claim that π1(VC , qC) ≅ Pic(XC) canonically. Since the equivalences above

are canonical, we need only show that I = J . To see this, take βi ∈ C̄ such that ωi

is not a vertex. Thus there is an integral relation aiωi = ∑j≠i ajωj with aj ≥ 0 for

all j and ai > 0. This means that there is λ ∈ L such that ⟨βj , λ⟩ = −aj ≤ 0 for all

j ≠ i and ⟨βi, λ⟩ = ai > 0. Moreover, as βi ∈ C̄ and ⟨βi, λ⟩ = ai > 0, we see that C

meets Hλ.

Conversely, for any λ ∈ L, we get the relation ∑j⟨βj , λ⟩ωj = 0 – that is, ⟨βi, λ⟩ωi =
∑j≠i −⟨βj , λ⟩ωj . If βi ∈ I, this means that ωi can be written as a positive combi-

nation of some of the other rays (distinct from ωi) since we assume the ωi ∈ N
generate distinct rays. Hence ωi is not a vertex. Moreover, as C meets Hλ and all

other weights βj have ⟨βj , λ⟩ ≤ 0, βi ∈ C̄. �

5.2. Near large radius regions. Now we move on to describing the near large

radius region VW near the toric curve Z(W ). It may be helpful to refer to the

worked example in §5.3 whilst reading this section.

For each wall W in the secondary fan, label the two neighbouring chambers C1

and C2. Let λ = λC1,C2 ∈ L be the primitive normal to W pointing towards C1.

Pick an element βW ∈ L∨ with λ-weight −1. The idea is that the orbit under the

1-PS corresponding to βW of a point sufficiently close to Z(W ) will be where our

push-off lies. The condition on βW ensures that this orbit maps isomorphically (as

opposed to being a finite cover) onto the rank 1 torus inside Z(W ).
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We can describe this torically as follows. Quotienting by βW projects W ⊂ L∨R
onto a full-dimensional cone W ⊂ (L∨/βW )R. This induces a toric map π′ ∶ UW → B′

where UW is the toric open subset of F with fan W ⊂ L∨R and B′ is the affine toric

variety associate to the cone W ⊂ (L∨/βW )R. Note that B′ has a unique torus fixed

point 0 corresponding to the maximal cone W . The fibres of π′ are exactly the

orbits of βW and the fibre over 0 is exactly Z(W ) ∩UW .

We now restrict π′ to the FIPS so that the fibres become βW -orbits punctured

at points of the discriminant (marked with crosses in Figure 7 (L)). As b tends to

0, the βW -orbit π′−1(b) breaks into several large radius curves Z(W ′) (including

Z(W )) and each of the points of the discriminant in π′−1(b) tends to one of the

points pW ′ of the discriminant in Z(W ′). Therefore for b sufficiently small, the

points of the discriminant in π′−1(b) are naturally partitioned according to their

limit point. For example, all the points in the grey region in Figure 7 (L) might

limit to pW .

As we are interested in only Z(W ), we want to focus on a subset of UW which

limits just to Z(W ). If we let L∨W ∶= L∨/⟨W ∩ L∨⟩, we note that the torus in

Z(W ) can be described as TL∨
W

. Writing C∗ ≅ R×
>0 ×S1 in polar coordinates gives

a canonical identification (as groups) TL∨
W

≅ TR
L∨
W
× TS1

L∨
W

where TR
L ∶= L ⊗ R×

>0

and TS
1

L ∶= L ⊗ S1. To define our subset, pick a cylinder E (with boundary) in

TL∨
W

⊂ Z(W ) of the form [a1, a2] × S1 (where a1, a2 ∈ R>0 are sufficiently small

and large respectively) under this identification. We define our subset U ′
W ⊂ UW

to be those points in UW which limit to a point in E under any 1-PS β ∈ L∨ in the

relative interior of W .

Then π′∣U ′
W

has fibres which are cylinders (with boundary). However π′∣U ′
W
∩FIPS

is not a fibration over its image – this is because points of the discriminant in the

fibres can either collide or go outside U ′
W . If we let Bo ∶= π′(U ′

W ∩ FIPS) ⊂ B′ be

the image, then Bo just consists of the complement in B′ of the toric divisors in B′

whose pre-image in U ′
W is part of the discriminant. Then there is a critical locus

Z ⊂ Bo of codimension at least 1 over which π′∣U ′
W
∩FIPS is not a fibration.

Then if we take B ⊂ Bo to be a small (analytic) open neighbourhood of 0, we

define VW to be the open subset of the FIPS given by U ′
W ∩ π′−1(B) ∩ FIPS. As

such, VW contains exactly the local structure of the FIPS near pW . Note that B

should be small enough such that any point in the discriminant in U ′
W ∩ π′−1(B)

limits to pW and no fibres of π′ are contained in the discriminant.

Definition 5.6. We call VW a near large radius region of the FIPS associated to

the wall W .

We note that VW comes with a map π ∶ VW → B (given by restricting π′ to VW )

which is necessarily surjective. Moreover, VW contains E/{pW } precisely when

Z(W ) is not part of the discriminant.

Remark 5.7. In §6, when the FIPS is 2d, we’ll want to take B small enough such

that π is also a fibration. This is not generally possible in higher dimensions.
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p1 p2

π−1(b)

2

mW

1

Dp1 p2

α2α1

γ

γ′

Figure 7. A fibre π′−1(b) (a βW -orbit) with the region π−1(b)
shaded (L) and some large radius paths in π−1(b) (R)

Definition 5.8. For a wall W in the secondary fan, we define mW to be the in-

tersection multiplicity of the non-toric components of the discriminant with Z(W ).
Similarly, we define mΓ,W to be the intersection multiplicity of Z(W ) with the

component ∇Γ of the discriminant corresponding to the face Γ ⊂ ∆ (see Remark

3.7).

The fibres π−1(b) for b ∈ B/Z are cylinders (with boundary) in π′−1(b) missing

exactly mW points (see Figure 7). If we pick a basepoint b ∈ B/Z, the fibre π−1(b)
plays the role of the push-off of Z(W ) for us.

Definition 5.9. If we pick 2 real basepoints p1 and p2 on the boundary of π−1(b)
as shown in Figure 7 (L) (so that Ci corresponds to pi), we refer to π1(VW ,{p1, p2})
as the near large radius groupoid.

Now we move on to simplifying the description of the near large radius groupoid.

This arises from a fibration structure on VW . By definition of Z, π∣π−1(B/Z) is

a fibration. Moreover, this fibration has two natural sections defined as follows.

Recall that we have the co-rank 1 torus TL∨∩W ⊂ TL∨ and so taking the TL∨∩W -

orbit of pi defines a section si of π′ in UW over B′. Restricting these to VW gives

two sections s1, s2 of π over B since we do not delete any points of these orbits when

we form VW for B sufficiently small. This follows from the fact that the non-toric

parts of the discriminant do not meet the large radius regions VC1 or VC2 .

Remark 5.10. By construction of the sections, toric loops in B (corresponding

to elements of π1(TL∨/βW ) ≅ L∨/βW ) lift to toric loops in TL∨ (corresponding to

elements in π1(TL∨) ≅ L∨) via the splitting L∨ = ⟨βW ⟩ ⊕ L∨ ∩ ⟨W ⟩. We write

β = nβW + β′ under this equivalence, where β′ ∈ L∨ has λC1,C2-weight 0.

Since π∣π−1(B/Z) is a (locally trivial) fibration with sections, π1(π−1(B/Z),{p1, p2})
can be understood in terms of monodromy on π1(π−1(b),{p1, p2}).

Remark 5.11. Later in §7.1, we will need a more general statement about the

description of fundamental groupoids in terms of monodromy. As such, we defer

precise definitions and results to there. For now, we just need that, in this setting,

there is a way to define an action (which we call monodromy) of π1(B/Z, b) on

π1(π−1(b),{p1, p2}). Then Theorem 7.3 tells us that, since our sections si extend
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over all of B, π1(VW ,{p1, p2}) is generated by π1(π−1(b),{p1, p2}) and the sections

(si)∗(π1(B, b)) for i = 1,2 subject only to relations coming from monodromy around

loops in B/Z.

However, even with this description to hand, in general π1(VW ,{p1, p2}) is still

hard to understand as the monodromy of the points of the discriminant in π−1(b)
can be quite complicated. However, as mentioned in §2, for a 2d FIPS Z is actually

empty. We’ll explore this situation in §6.

In the general case, we now identify a subgroupoid – the large radius groupoid

GWLR – of π1(VW ,{p1, p2}) and a presentation for this subgroupoid which plays the

analogue of the presentation for the FIPS in §2.1. For this, we observe that E/{pW }
is homotopy equivalent to π−1(b)/D where D is a disk in π−1(b) punctured at all the

points of the (non-toric) discriminant (see Figure 7 (R)). As such, the large radius

paths αi/γ in Z(W ) (see Figure 1) can be “pushed-off” using this identification to

give large radius paths in the FIPS (in fact, in π−1(b)) as shown in blue in Figure

7 (R).

As we vary b ∈ B/Z, the points of the discriminant in π−1(b) undergo monodromy.

But because B is sufficiently small and all these points limit to the single point pW ,

we can assume that these points always lie in D over any b ∈ B. As such, our large

radius paths in π−1(b) are invariant under all possible monodromies in B/Z. Then

the subgroupoid of π1(VW ,{p1, p2}) generated by the large radius paths in π−1(b)
and the sections is actually just the product π1(π−1(b)/D,{p1, p2}) × π1(B, b).

Definition 5.12. We call GWLR ∶= π1(π−1(b)/D,{p1, p2}) × π1(B, b) the large ra-

dius groupoid near the curve Z(W ). It is naturally a subgroupoid of the near

large radius groupoid associated to W and hence comes with a natural map to

π1(FIPS,{p1, p2}).

Remark 5.13. When the FIPS is 1-dimensional, this map GWLR → π1(FIPS,{p1, p2})
is always surjective and often an equivalence – we just have to add in the possible

orbifold structure at the large radius limits in general. When the FIPS is higher-

dimensional, this map is hardly ever surjective. This is because π1(VW ) for a single

wall W rarely generates π1(FIPS) and, even if it does, in general not every path in

π1(VW ) is a large radius path.

Remark 5.14. It’s useful to have an explicit presentation of this groupoid in terms

of toric loops and the paths γ. For this, we note that π1(π−1(b)/D,{p1, p2}) is the

free groupoid generated by the large radius paths α1, α2 and γ in Figure 7 (R).

By Remark 5.10, the toric loops in B (corresponding to β′ ∈ L∨∩ ⟨W ⟩) lift under

si to toric loops in TL∨ based at pi which we’ll denote by αβ
′

Ci
(c.f. Remark 5.5).

Here we use the letter α because, as a toric loop, it plays an analogous role to α

in Z(W ) (see Figure 1). Similarly we relabel αi as αβWCi because this is exactly the

toric loop based at pi in the fibre π−1(b), which is a subset of a βW -orbit. Finally

we relabel γ as γ0
C1,C2

, the reason being that this extra integer superscript fixes the

representation on γ in §5.4 (see Remark 5.21).
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Then GWLR can be presented as the groupoid on p1 and p2 which is generated by

αβCi (for i = 1,2 and all β ∈ L∨ where we use the splitting from Remark 5.10) and

γ0
C1,C2

subject to the relations:

(1) The map L∨ → (GWLR)pi , β ↦ αβCi is a group homomorphism for i = 1,2.

(2) If β′ ∈ L∨ ∩W corresponds to a toric divisor in F which meets the FIPS

αβ
′

Ci
= e for i = 1,2.

(3) γ0
C1,C2

commutes with αβ
′

Ci
for β′ ∈ L∨ ∩ ⟨W ⟩.

By the correspondence in §5.1 between toric loops and the Picard group, the rela-

tions in (1) and (2) are a subset of the relations in Pic(XCi) for i = 1,2. Typically

they are in fact a strict subset because in GWLR we do not impose the relations com-

ing from the toric divisors in the regions VCi near pi which lie in the FIPS but do

not contain Z(W ).

Remark 5.15. Of course, there are many presentations of GWLR. Another more

symmetric one is given by adding a path in π−1(b)/D from p1 to p2 which is the

analogue of γ′ in Figure 7 (R). We denote the corresponding path by γ1
C1,C2

. Then

GWLR can be presented with this additional generator as subject to all the relations

in Remark 5.14 plus the additional relation:

γ1
C1,C2

= (αβWC2
)−1 ○ γ0

C1,C2
○ αβWC1

For an even more symmetric presentation, we could pick γ0
C1,C2

and γ−ηλC2,C1
∶=

(γ1
C1,C2

)−1 as our non-toric generators, where λ = λC1,C2 . Then in addition to all

the relations in Remark 5.14 we have the additional relation:

γ−ηλC2,C1
○ (αβWC2

)−1 ○ γ0
C1,C2

○ αβWC1
= e

Remark 5.16. Having understood the large radius groupoid for a particular wall-

crossing, it is natural to try to glue together these groupoids for nearby wall-

crossings. Specifically suppose we have two walls W1 and W2 such that VW1 and

VW2 meet in the large radius region VC . Suppose we pick our basepoints pi1, p
i
2 for

wall-crossing Wi to be real and positive – that is, lie within TR
L∨ – and suppose p1

1

and p2
1 both correspond to the chamber C. Then there is a canonical homotopy

class of paths connecting p1
1 and p2

1 in VC , given by any real positive path in VC

which connects these two points. As such, there is a canonical way to identify these

two basepoints in GW1

LR and GW2

LR respectively and hence glue them together as a

groupoid with 3 basepoints. Similarly we could continue and glue together all such

large radius groupoids into one big large radius groupoid GLR with one basepoint

for each chamber of the secondary fan. As each of the large radius groupoids comes

with a map to π1(FIPS), GLR comes with such a map too.

Remark 5.17. When the FIPS is more than 2-dimensional (the case we care about

is the Triangle VGIT in §9), it will be useful to note that we can generalise this

construction of push-offs of toric curves in F to push-offs of higher-dimensional toric



47

subvarieties in F. In particular, let β be the generator of a ray in the secondary

fan, corresponding to a toric divisor D in F, which we want to push-off into the

FIPS. Then, instead of the 1-PS βW , to define a fibration structure we now need

to pick a co-rank 1 sublattice L∨β ⊂ L∨. Equivalently, the fibration can be specified

by the primitive normal λβ ∈ L to L∨β . We require that ⟨β,λβ⟩ = 1 so that the fibres

project isomorphically onto the torus TL∨/β inside D.

Then the fibration is the toric map π′ ∶ Uβ → B′ induced by quotienting by

L∨β where the base B′ is a 1-dimensional affine toric variety with a unique torus

fixed point 0 ∈ B′ and the fibres are orbits of the corresponding co-rank 1 subtorus

TL∨
β
⊂ TL∨ . As before, the push-off will lie in such a fibre sufficiently close to D.

Pick a closed subset E ⊂ TL∨/β in the open torus in D which is defined by

inequalities (above we chose a1 ≤ ∣X ∣ ≤ a2 where X was a toric coordinate on TL∨
W

)

and such that E minus the discriminant is a deformation retract of D minus the

discriminant. Then we consider the subset U ′
β ⊂ Uβ of points which limit under the

1-PS β to E. So the fibres of π′∣U ′
β

retain only what happens in π′ near D.

Restricting to the FIPS and shrinking B′ to a small (possibly punctured or

orbifold) disk B, we end up with a near large radius region of the FIPS near D,

which we denote Vβ ⊂ FIPS. This comes with a surjective map π ∶ Vβ → B. In fact,

as we’ll see in §6.1, the locus Z over which π fails to be a fibration is codimension

1, so we can assume that Z = ∅ and hence π is a fibration over B.

Pick basepoints pi in the fibre π−1(b) over b ∈ B in some (or all) of the large

radius regions VCi near D. As before, these give rise to sections of π over B such

that the canonical generating loop γ in B (corresponding to β ∈ L∨/L∨β) lifts to the

toric loop αβCi ∈ π1(TL∨ , pi). Then, as in Remark 5.11, it follows that π1(Vβ ,{pi}) is

generated by the fibre π1(π−1(b),{pi}) and sections (si)∗(π1(B, b)) = ⟨αβCi⟩ subject

to the relations coming from monodromy around γ.

5.3. The Octahedron VGIT. As there was a lot of notation in the preceding

discussion, to clarify things we now describe a simple example. This example is

called the Octahedron VGIT and it has a 2-dimensional FIPS. Our aim is ultimately

to show (see Theorem 7.16) that we can construct a representation of π1(FIPS) on

the phases but, for now, we content ourselves with understanding the preceding

topology.

We start with the toric data. The Octahedron VGIT has weight matrix Q ∶ Z6 →
Z2 given by:

Q =
⎛
⎝

1 1 0 0 −1 −1

0 0 1 1 −1 −1

⎞
⎠

Thus L∨ has rank 2 and one checks that there are 3 chambers whose unstable loci

are indicated in Figure 8 (L). We label the walls and chambers as indicated in the

figure.

We note that e∨1 , e
∨
3 and e∨5 are primitive integral defining functions (see Definition

3.26) for the 3 subdivisions corresponding to the 3 walls of the secondary fan. As
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W2

W1

W3

{x1 = x2 = 0}
{x3 = x4 = 0}

C1

{x3 = x4 = 0}
{x5 = x6 = 0}

C2

{x1 = x2 = 0}
{x5 = x6 = 0}

C3

ω5 ω4

ω2

ω3

ω1

ω6

Figure 8. The secondary fan for the Octahedron VGIT with the
unstable loci for the phases (L) and the octahedron ∆ (R)

such, the stacky secondary fan (see §3.4) has 3 rays:

β(e∨1) = (−1,−1), β(e∨2) = (1,0), β(e∨3) = (0,1)

It follows that the secondary stack F is P2 with coordinates [x, y, z].
One checks that the ray map A ∶ Z6 → Z4 can be described as:

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 1 1 0

0 1 0 1 0 1

−1 1 0 0 0 0

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟
⎠

and so ∆, living in the height 1 slice x4 = 1, is the octahedron shown in Figure 8

(R). As such, the phases are 4-dimensional toric Calabi–Yaus and, from thinking

about the weights, are all globally isomorphic to Tot OP1×P1(−1,−1)⊕2.

Remark 5.18. From a different perspective, this VGIT arises as the representations

(with dimension (1,1,1)) of the following quiver:

1 2

0

We now move on to the discriminant. As all the rays ωi are vertices, the whole

toric boundary is part of the discriminant. As all the edges and facets of the

octahedron ∆ are simplices, we only have one other component of the discriminant,

namely the principal component ∇pr. If we embed TL∨ ⊂ F ≅ P2 using the first and

third coordinates of P2, Horn uniformisation (see (4) in §3.6) describes ∇pr as the
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image of the map (which for dimension reasons is a morphism here):

P1 → P2

[λ1, λ2]↦ [λ2
1, (λ1 + λ2)2, λ2

2]

and hence ∇pr is a smooth conic. Thus ∇pr intersects each torus invariant curve

Z(Wi) in a single point with multiplicity 2 and so we conclude that mWi = 2.

Now we would like to understand the large radius groupoid associated to a

wall. Let’s choose the wall W2 from Figure 8 (L). Then Z(W2) = {x = 0} and

UW2 = P2/{y = 0} ∪ {z = 0} (see Figure 9 (L)). Then λC1,C3 = (0,1) and we can

choose βW2 = (−1,−1). With these choices, the paths pushed off from Z(W2) will

live in a βW2 -orbit, also known as a line {x = bz} ⊂ UW2 for some b ∈ C.

Explicitly following the construction, we consider the quotient map:

Z2 → Z2 /βW2 ≅ Z, (x1, x2)↦ x1 − x2

Then the affine toric variety B′ corresponding to W2/βW2 is C with coordinate b,

whose unique torus fixed point 0 = {b = 0}. The map π′ ∶ UW2 → C can be described

as [x, y, z]↦ x/z. Moreover, the fibre over 0 is exactly Z(W2) ∩UW2 .

Now we need to understand what happens when we restrict to the FIPS. From

Horn uniformisation, we can compute that {x = bz} meets ∇pr at the 2 points

[b, (1 ±
√
b)2,1]. We can see that, as b→ 0, these two points converge on the point

pW2 = [0,1,1] in Z(W2). We pick the cylinder E = {[y, z] ∣ a1∣y∣ ≤ ∣z∣ ≤ a2∣y∣} in

Z(W2) for a1, a2 ∈ R>0 with a1 < 1 and a2 > 1. Then U ′
W2

is those points in UW2

which limit to E as t → 0 under the 1-PS of TL∨ corresponding to (1,0) ∈ L∨,

namely t ↦ [t,1,1]. Thus U ′
W2

= {[x, y, z] ∣ a1∣y∣ ≤ ∣z∣ ≤ a2∣y∣, y ≠ 0, z ≠ 0} (see

Figure 9 (L)).

However π′∣U ′
W2

∩FIPS is not a fibration over its image. We first note that its

image Bo = π′(U ′
W2

∩ FIPS) = B′/{b = 0} as Z(W2) is part of the discriminant.

Then we observe that, as b → 1, one of the points of ∇pr tends to [1,0,1] which is

not in U ′
W2

. As such, π′ is not a fibration at b = 1 and so {b = 1} ⊂ Z. However,

so long as a1 ≤ ∣1 ±
√
b∣−2 ≤ a2 for both square-roots, we get a fibration on U ′

W2
.

As such, if we take B ⊂ Bo to be a disk punctured at the origin satisfying this

condition, then π will be a fibration over B as in Remark 5.7. Hence we end up

with the near large radius region VW2 = U ′
W2

∩ π′−1(B) ∩ FIPS (see Figure 9 (L)).

If we take our basepoint b = {b = ε} with ε ∈ R>0 small enough for b to be in B,

then π−1(b) is a cylinder punctured in mW2 = 2 points. Choosing pi = [ε,1/ai,1]
in π−1(ε), we get sections si(b) = [b,1/ai,1] over all of B. With these sections,

the toric loop γ ∶ t ↦ εe2πit ∈ B at b lifts to the toric loop (denoted α
(1,0)
Ci

) in TL∨

corresponding to the 1-PS (1,0).
From here, we can now describe the large radius groupoid for W2. Namely, as B

is a punctured disk with no critical locus Z inside it, we can identify π1(B, b) with

Z using γ and this is the only path in B/Z with interesting monodromy.
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U ′
W2

π−1(b)
VW2

Z(W2)

p1

p2

γ0
C1,C3

α
(1,0)
C1

α
(1,0)
C3

α
(−1,−1)
C1

α
(−1,−1)
C3

Figure 9. Images of regions UW2 (everything except the dashed
lines), U ′

W2
(light grey), VW2 (dark grey) and π−1(b) under the

moment map for F = P2 (L) and generators for GW2

LR (R)

Remark 5.19. In fact, the monodromy around γ just permutes the two points of

the discriminant, as shown in Figure 18 (L), but we will not need this here. We

note that it indeed leaves all the paths in π−1(b)/D alone.

Since we have a fibration of curves over a punctured disk, standard topology

tells us that GW2

LR is generated by α
(1,0)
Ci

, α
(−1,−1)
Ci

(for i = 1,3) and γ0
C1,C3

subject to

α
(1,0)
Ci

commuting with α
(−1,−1)
Ci

and γ0
C1,C3

(here (2) in Remark 5.14 is vacuous as

we have deleted all the boundary). These generators are shown in Figure 9 (R).

5.4. Representation on large radius paths. Having pushed our paths in Z(W )
off into the FIPS, we now want to assign derived equivalences to these paths in anal-

ogy with the case of a 1d FIPS in §2. Recall that for a 1d FIPS, toric loops α gave

us line bundles O(β) and hence the auto-equivalence ⊗O(β) ∶Db(XC)→Db(XC).
Moreover, paths of the form γ gave window equivalences between neighbouring

phases.

Here, using the presentation of GWLR from Remark 5.14, exactly the same ideas

give us:

Proposition 5.20. For any wall W in the secondary fan, ρW (αβC) = ⊗O(β) (using

the correspondence in Lemma 5.4) and ρW (γ0
C1,C2

) = φ0 ∶Db(XC1)→Db(XC2) (see

Definition 4.18) describes a functor ρW ∶ GWLR →Cat1 such that ρ(qCi) ≅Db(XCi).

Remark 5.21. We see here that there is an ambiguity in defining ρW (γ0
C1,C2

) –

we could have chosen φw for any w ∈ Z. Throughout, we fix this ambiguity by

labelling all of the large radius paths with a superscript integer which specifies the

corresponding window. As such, a large radius path labelled γkC1,C2
will always

correspond under ρW to φk.

Proof. All the relations in GWLR hold tautologically.
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By Remark 5.14, we know relations (1) and (2) are just a subset of the relations

in the Picard group. Lemma 5.4 tells us that the Picard group acts and so these

relations hold.

For (3), we need to show that the window equivalence φ0 commutes with tensor-

ing by O(β′) for β′ ∈ L∨ ∩ ⟨W ⟩ – that is, for F ∈Db(XC1), φ0(F )(β′) = φ0(F (β′)).
Recall that, by definition, φ0(F ) is the restriction to XC2 of an element F̂ ∈Wλ(0)
such that F̂ ∣XC1

= F . By Corollary 4.16, such an F̂ is unique (up to isomorphism).

Then F̂ (β′) ∈ Wλ(0) too since β′ has λ-weight 0 (see Remark 5.10). Moreover

F̂ (β′)∣XC1
= F (β′). So F̂ (β′) is a lift to Wλ(0) of F (β′) and so, by uniqueness,

is the lift used in the definition of φ0. So φ0(F (β′)) = F̂ (β′)∣XC2
= φ0(F )(β′) as

claimed.

�

Remark 5.22. If we use the first alternative presentation from Remark 5.15, then

we can define ρW (γ1
C1,C2

) = φ1 ∶ Db(XC1) → Db(XC2). We then need to check one

additional relation which says that, for F ∈Db(XC1), φ1(F (−βW )) = φ0(F )(−βW )
where βW has λ-weight −1. This is pretty much the same as checking (3) above

except that, because βW has λ-weight −1, F̂ (−βW ) ∈Wλ(1) and so φ1(F (−βW )) =
F̂ (−βW )∣XC2

= φ0(F )(−βW ).
If we use the second presentation in Remark 5.15, we can define ρW (γ−ηλC2,C1

) =
φ−ηλ ∶Db(XC2)→Db(XC1). We need then to check one additional relation. Using

the relation we just checked, this can be simplified to φ−ηλ = (φ1)−1. This holds

since Wλ−1(−ηλ) =Wλ(1).

Example 5.23. We analyse what this representation looks like as we cross the

wall W2 in the Octahedron VGIT from §5.3. In this case, Pic(XC) ≅ L∨ = Z2 for

all phases, where we label the line bundle OXC (a, b) accordingly. So α
(a,b)
Ci

just

acts by ⊗OXC (a, b). As a word of warning, we know that all phases are isomorphic

to Tot OP1×P1(−1,−1)⊕2. However OXC (a, b) does not agree in general (though it

does for XC1) with the pullback of OP1×P1(a, b) to the total space of this rank 2

vector bundle. This is because flops act non-trivially on divisors.

Now the large radius path γ0
C1,C3

acts by the window equivalence φ0, which

involves lifting into the window Wλ(0) where λ ∶= λC1,C3 = (0,1). To understand

this category, recall from Figure 8 (L), that in forming the phases for C1 and C3

we delete the stratum {x1 = x2 = 0} from both and then there is one other unstable

stratum that switches from {x3 = x4 = 0} in C1 to {x5 = x6 = 0} in C3. Therefore

the phase on the wall Xλ
0 = [C6 /{x1 = x2 = 0}/(C∗)2] and, recalling that η = 2

for all walls, Wλ(0) ⊂ Db(Xλ
0 ) is defined by having λ-weights in [0,1]. From the

geometric description of XC1 as Tot OP1×P1(−1,−1)⊕2, it follows that Db(XC1) is

generated by the 4 line bundles:

OXC1
,O(1,0)XC1

,OXC1
(0,1),OXC1

(1,1)



52

As these all have λ-weight in [0,1], these lift to Wλ(0) trivially. As such, φ0 can be

described as sending OXC1
(a, b)↦ OXC3

(a, b) for these 4 values of (a, b). However,

for other values of (a, b), φ0 will do something non-trivial.

We now interpret this action geometrically using Remark 4.19 which says that

the window shift ψ0 = φ−1
0 ○ φ1 on Db(XC1) is the twist about an explicit spherical

functor F . To do this, we observe that Z ′
λ = Z ′λ ∩ Xλ

0 = {x3 = x4 = x5 = x6 =
0} ∩Xλ

0 ≅ P1
x1,x2

(where we recall that the prime means that we forget the trivial

λ-action). Geometrically we interpret this by saying that, as we move from C1 to

W2, P1
x1,x2

×P1
x3,x4

in XC1 collapses along the first ruling to Z ′
λ. Similarly as we go

from W2 to C3, Z ′
λ expands to become P1

x1,x2
× P1

x5,x6
in XC3 .

Then F = i∗○iλ,0 ∶Db(P1
x1,x2

)→Db(XC1) is our spherical functor and F (OP1(n)) =
i∗OP1×P1(n,0) where i ∶ P1

x1,x2
×P1

x3,x4
⊂XC1 is the inclusion. As such, the image of

F is concentrated on the collapsing locus in XC1 and so the twist modifies objects

in Db(XC1) only along this locus.

Remark 5.24. We have seen in Remark 5.16 that we can canonically glue together

the large radius groupoids for different walls along the large radius regions VC near

torus fixed points to get the large radius groupoid GLR. Moreover, since the action

of π1(VC) by tensoring with line bundles is canonical (see §5.1), ρW respects this

gluing and so we get a representation ρ on GLR.

However this representation is not particularly useful in its own right. Firstly

(see Remark 5.13) paths in GLR need not generate π1(FIPS). We’ll show how to

get around this issue for a 2d FIPS in §6. Also, in some cases of interest, GLR
does generate π1(FIPS). For example, in the quasi-symmetric case treated in §8

the discriminant is a (log)-hyperplane arrangement and this holds.

However, even if GLR does generate, the bigger issue is that the representation

ρW is not canonical (see Remark 5.21). As such, when we start gluing these to-

gether, the representation becomes even less canonical. If we want to extend the

representation of this groupoid to the whole of π1(FIPS) (in the case when GLR
generates) we need to prove that the extra relations coming from the “interior” of

the FIPS hold. But if we have made arbitrary choices of windows on different walls,

then the composition of such functors is not going to admit a simple description.

As such, there seems little use to this abstract gluing. Instead, when we come to

construct such representations, we will need to choose a collection of paths and

functors for these different walls which gives a simple description of the relations

from the interior of the FIPS and the corresponding functors.

6. Near large radius in a 2d FIPS

In this section, we shall upgrade our action ρW on GWLR (see Proposition 5.20) to

the full action of the near large radius groupoid in the case when we are crossing

a wall W in a 2-dimensional FIPS. Recall from Remark 3.36 that, in this case, the

stacky structure on F is simple – that is, β from §3.4 is just given by the weights

Q. To define our action, we shall need to define additional equivalences between
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two neighbouring phases corresponding to the additional paths in π1(VW ,{p1, p2})
which are not large radius paths – that is, not pushed off from the curve Z(W ) ⊂ F

at large radius as described in §5.2. These equivalences will come from fractional

windows (see Definition 4.24). Moreover, we need to check that the appropriate

monodromy relations hold for these paths.

6.1. Near large radius monodromy. Recall from §5.2 that a choice of βW ∈ L∨

allows us to define the near large radius region VW . This space comes with a

map π ∶ VW → B which is a fibration away from a locus Z ⊂ B of codimension

at least 1. The fibres π−1(b) are cylinders in a βW -orbit in TL∨ which have been

punctured at the mW points of the discriminant in π−1(b). We also saw that,

if we picked 2 basepoints p1, p2 on π−1(b), we could define 2 sections si over B

and π1(VW ,{p1, p2}) is then generated by π1(π−1(b),{p1, p2}) and the sections

(si)∗(π1(B, b)) for i = 1,2 subject only to relations coming from monodromy in

B/Z.

When the FIPS is 2-dimensional, B is a (possibly punctured or orbifold) disk

which we can assume is small enough to miss any of the 0-dimensional locus Z. As

such, we can assume Z = ∅ in this case and so we only have to impose monodromy

relations coming from monodromy in B. As B is a (possibly punctured or orbifold)

disk, π1(B, b) is generated by a single loop and so there is a single monodromy

relation.

Remark 6.1. This is exactly what we saw in the Octahedron VGIT which we con-

sidered in §5.3.

In fact, the definition of B in §5.2 shows that π1(B, b) is naturally a quotient

of L∨/βW . As this lattice has a natural generator given by the primitive generator

uW of the ray of the secondary fan associated to W , so does π1(B, b). We give the

monodromy with respect to this natural generating loop a name:

Definition 6.2. We define the local monodromy m ∈ Aut(π1(π−1(b),{p1, p2})) to

be the monodromy action on π−1(b) associated to this generating loop in the base

and sections s1 and s2.

We now want to know what m looks like – this is Lemma 6.5. This will then

allow us to construct our new action in §6.2. We begin by calculating the intersec-

tion multiplicity m∆,W of ∇pr with Z(W ) (see Definition 5.8) explicitly from the

combinatorial data. First, we observe that in dimension 2, the choice of βW speci-

fies a natural set of coordinates on UW . Namely, there is a toric coordinate coming

from B (which has a natural toric coordinate coming from the natural generator of

L∨/βW ) and a toric coordinate coming from the natural generator βW of L∨/uW ,

where uW is the primitive generator of W . When we draw pictures of monodromy

such as Figure 10 we shall use the second toric coordinate above.

Lemma 6.3. We may assume that our wall W is generated by e1 ∈ L∨ = Z2 and

that βW = (0,1). Then m∆,W = max(∑i∣βi∈⟨W ⟩ β1
i ,0)
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Proof. Take the toric open set UW in F associated to the ray generated by e1. This

has coordinates (x1, x2) ∈ C×C∗ and Z(W ) = {x1 = 0}. Horn uniformisation for

∇pr (see (4) in §3.6) is a morphism P1 → F, which in these coordinates reads:

[λ1, λ2]↦ (( ∏
βi∈⟨W ⟩

β1
i

β1
i )λ∑i∣βi∈⟨W ⟩ β

1
i

1 ∏
βi∉⟨W ⟩

(β1
i λ1 + β2

i λ2)β
1
i , ∏
βi∉⟨W ⟩

(β1
i λ1 + β2

i λ2)β
2
i )

Since the x2 coordinate must lie in C∗ at the intersection of Z(W ) with ∇pr, only

weights lying on ⟨W ⟩ contribute to the intersection. As such, there is at most one

intersection point [0,1] and this contributes (with multiplicitym∆,W = ∑i∣βi∈⟨W ⟩ β1
i )

precisely when ∑i∣βi∈⟨W ⟩ β1
i > 0. �

In dimension 2, the interaction of the components of the discriminant is also very

restricted. Recall (see §3.1) that components of the discriminant (possibly empty)

are indexed by minimal faces Γ ⊂ ∆. Dually (see Lemma 3.47) they are indexed

by proper subspaces in L∨R with a positive relation, noting that, in dimension 2,

these subspaces are automatically spanned by the weights on them. If W is such a

subspace, we label the corresponding component ∇W .

Lemma 6.4. At most two components of the discriminant, namely ∇pr (when

m∆,W > 0) and ∇W (when ⟨W ⟩ has a positive relation), meet Z(W ). In fact, there

are 3 possibilities:

Z(W ) meets ∇pr Z(W ) meets ∇W mW

Case 1 ✓ ✓ m∆,W + 1

Case 2 ✓ X m∆,W

Case 3 X ✓ 1

Proof. The first part is a special case of Lemma 10.16, noting that the only sub-

spaces of a 2d vector space of the form (L′Γ)∨R are 0 and lines ` for which there is

a positive relation among the weights on `. Moreover, such ` = ⟨W ⟩ are necessarily

circuits as they are codimension 1. If we call the corresponding face Γ, Proposition

10.17 gives that mΓ,W = 1 for either wall W on `.

As the walls of the secondary fan are the tropicalisation of the non-toric dis-

criminant, some component of the non-toric discriminant must hit the curve Z(W )
(This follows from [20], Ch. 6, Theorem 1.12b and Ch. 10, Theorem 1.4a). This

leaves only the 3 possibilities in the table. �

As such, the fibre π−1(b) contains mW points of the discriminant and at most

one of these is from a non-principal component of the discriminant – such a point

exists in Cases 1 and 3.

Lemma 6.5. The local monodromy can be put into the following forms:

Case 1: Monodromy fixes the point of ∇W in π−1(b) and cycles the points of

∇pr around the point of ∇W as in Figure 10 (L) .

Case 2: Monodromy cycles the points of ∇pr in π−1(b) as in Figure 10 (R).
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∇W

∇pr1

⋮

∇pri

⋮

∇pri + 1

∇prm∆,W

1

2 ∇pr

i ∇pr

⋮

i + 1 ∇pr

⋮

m∆,W ∇pr

∇pr

Figure 10. Standard forms for the local monodromy (dashed
line) in Case 1 (L) and Case 2 (R)

Case 3: Monodromy is trivial. This is the large radius description from §5.

Proof. We have already observed in §5.2 that the monodromy is concentrated in

the disk D in π−1(b). Write Horn uniformisation as in Lemma 6.3, using the affine

coordinate Λ = λ1/λ2 on P1 :

H ∶ Λ↦ (( ∏
βi∈⟨W ⟩

β1
i

β1
i )Λm∆,W ∏

βi∉⟨W ⟩
(β1
i Λ + β2

i )β
1
i , ∏
βi∉⟨W ⟩

(β1
i Λ + β2

i )β
2
i )

One checks that the intersection point pW = (0, p′W ) has a unique pre-image (namely

Λ = 0) in P1 where p′W =∏βi∉⟨W ⟩ β
2
i
β2
i .

Since we have written H with respect to the same coordinates on UW which we

used in the construction of VW , we have that the projection π′ is just projection

onto the first coordinate. As such, as we go round a loop γ(t) = e2πit in the base

B, the Λ-coordinate of a point in ∇pr roughly follows t ↦ Λe2πit/m∆,W . As the

natural coordinate coming from βW = (0,1) is x2, we want to picture monodromy

in terms of x2. So expanding the x2-coordinate of H near pW in terms of Λ, we see

that it equals −p′Wm∆,WΛ plus higher order terms in Λ (which, since m∆,W ≠ 0,

play no role). Therefore (up to homotopy) the monodromy is as shown in Figure

10 (R) for Case 2. In Case 1, we just observe additionally that the x2-coordinate

of ∇W = {x2 = p′W } is fixed and so the points in ∇pr just cycle around the point in

∇W . This gives the monodromy in Figure 10 (L) for Case 1. �

Remark 6.6. From the explicit form of H in the proof, it’s easy to see that, although

∇pr is singular in general, if ∇pr meets Z(W ) (at pW say), ∇pr is smooth at pW .

To see this, we compute that the derivative at Λ = 0 is (0,−m∆,W p
′
W ) for m∆,W >

1 and (∏βi∈⟨W ⟩ β
1
i
β1
i ∏βi∉⟨W ⟩ β

2
i
β1
i ,−p′W ) for m∆,W = 1, where we use that −m∆,W =
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p1 p2

0

1

⋮

n

γ0
C1,C2

γ′

αβWC1

αβWC2

γ0,1
C1,C2

γ0,mW −1
C1,C2 p1 p2

1

2

⋮

n

γ0
C1,C2

γ′

αβWC1

αβWC2

γ0,1
C1,C2

γ0,mW −1
C1,C2

Figure 11. Free generators for π1(π−1(b),{p1, p2}) in Case 1 (L)
and Case 2 (R) with an additional path γ′ marked and n =m∆,W

∑βi∉⟨W ⟩ β1
i from the Calabi–Yau condition. As the proof shows H is injective near

pW , ∇pr is smooth at pW as claimed.

In fact, this gives another way to prove the lemma in Case 2 by noting that,

at the smooth point pW of ∇pr, Taylor’s theorem gives a standard form for the

intersection of ∇pr with Z(W ).

Finally, having described an explicit standard form for our monodromy, we label

the point of ∇W in Figure 10 by 0 (in case 1) and the points of ∇pr by increas-

ing integers from 1 up to m∆,W going from bottom to top. Then we pick the

paths γ0,i
C1,C2

and αβWCi shown in blue in Figure 11, which are free generators for

π1(π−1(b),{p1, p2}). Note that γ0,0
C1,C2

is exactly our large radius path γ0
C1,C2

from

§5, so the near large radius paths correspond to i ≥ 1. Again the notation γ0,i
C1,C2

is supposed to also (partially) specify the representation on this path (see Remark

6.10).

Remark 6.7. As there are many ways to identify a given fibre π−1(b) with our

standard form, this description is not canonical. Nonetheless, any such description

will be enough for us to construct our action in §6.2.

It follows from our discussion at the beginning of this section and the description

of the monodromy that these choices give a presentation of π1(VW ,{p1, p2}) with

generators γ0,i
C1,C2

for i = 0, . . . ,mW −1 and αβCj for j = 1,2 and β ∈ L∨ with relations:

(1) The map L∨ → π1(VW , pj), β ↦ αβCj is a group homomorphism for j = 1,2.

(2) If β′ ∈ L∨ ∩W corresponds to a toric divisor in F which meets the FIPS

αβ
′

Cj
= e for j = 1,2.

(3) (Monodromy relations) αuWC2
○γ0,i
C1,C2

○α−uWC1
= m(γ0,i

C1,C2
) for i = 0, . . . ,mW−1.

As we have chosen γ0,0
C1,C2

= γ0
C1,C2

and αβWCi here such that they agree with our

large radius presentation from Remark 5.14, our notation is consistent under the

inclusion GWLR ↪ π1(VW ,{p1, p2}).

Example 6.8. Here we revisit crossing the wall W2 in Octahedron VGIT from

§5.3. From Figure 8, we can see that m∆,W2 = 2 (calculated using Lemma 6.3),

which agrees with our previous calculation. Moreover there is no positive relation
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p1 p2

0

1

⋮
i

⋮
i + 1

m∆,W

m(γ0,i
C1,C2

)

p1 p2

1

2

i

⋮

i + 1

⋮
m∆,W

m(γ0,i
C1,C2

)

Figure 12. Effect of monodromy on the path γ0,i
C1,C2

in π−1(b)
(see Figure 11) in Case 1 (L) and Case 2 (R)

on ⟨W2⟩, as −W2 is not is a ray in the secondary fan. So Lemma 6.4 tells us

that we are in case 2 – in fact, we’ve seen that ∇pr is the only component of the

discriminant. Finally Lemma 6.5 tells us that the 2 points in π−1(b) should swap

as in Figure 10 (R). Recalling that these points in π−1(b) are [b, (1 ±
√
b)2,1], we

can follow the monodromy explicitly around b = εe2πit and see that it is given by

Figure 18 (L). This agrees with Figure 10 (R).

6.2. Representation on near large radius paths. We shall now explain how

we can extend the action of ρW on GWLR to π1(VW ,{p1, p2}) by assigning certain

fractional window equivalences (see Definition 4.24) to our extra generators γ0,i
C1,C2

(for i = 1, . . . ,mW −1). For this, we need to choose some specific SODs of Db(Zλ)0 =
Db(Z ′

λ) where, as usual, λ = λC1,C2 ∈ L is the primitive normal to W pointing

towards the chamber C1. Recall that Z ′
λ is a phase of the rank 1 linear toric VGIT

given by the weights βi lying on ⟨W ⟩ – that is, the VGIT with X0 = Z ′λ, the λ-fixed

locus. We refer to this VGIT as the VGIT on Z ′λ or on W . Then Z ′
λ is the phase

of this VGIT which corresponds to the chamber W . We’ll let Ẑλ be the (possibly

empty) other phase of this VGIT.

Remark 6.9. We note that the rank 1 VGIT on Z ′λ is generally not Calabi–Yau.

Remark 6.10. Here, as for the large radius representation (see Remark 5.21), we

have an ambiguity in that we could use Db(Zλ)w′ for any w′ ∈ Z instead to define

the representation on γ0,i
C1,C2

. In fact, on these paths ρW is even more ambiguous

because, having fixed w′, it requires a choice of SOD. We’ll see below that the

choice of such an SOD is specified by an additional integer w ∈ Z – this roughly

corresponds to the ambiguity of writing our monodromy in standard form, as in

Remark 6.7. We’ll see in Remark 6.14 that the notation γ0,i
C1,C2

is supposed to fix

some of this ambiguity in ρW .

Recalling that Z ′
λ is a minimal phase if KZ′

λ
is nef, the 3 topological cases in

Lemma 6.4 have geometric analogues as follows:
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(1) Using the toric description of KZ′
λ

(see [14], Theorem 8.2.3) m∆,W > 0

means that Ẑλ is minimal. Moreover since ∇W intersects Z(W ), ⟨W ⟩ has

a positive relation and hence Ẑλ ≠ ∅.

(2) As m∆,W > 0, Ẑλ is still the minimal phase, but as ⟨W ⟩ does not have a

positive relation Ẑλ = ∅.

(3) As m∆,W = 0, Z ′
λ is minimal.

Recalling Example 4.23 with X0 = Z ′λ, the theory of wall-crossings in a (not

necessarily Calabi–Yau) rank 1 toric linear VGIT gives an SOD of a maximal phase

in terms of a minimal phase and some number of exceptional objects. If we let λ′

be the primitive 1-PS in the VGIT on Z ′λ which points away from W , then these

SODs are given explicitly in Example 4.23. With these choices, X+/X− in that

example corresponds to Z ′
λ/Ẑλ. We also note that −µλ′ ∶= ⟨KZ′λ , λ

′⟩ agrees with

m∆,W when the former is positive. Thus the 3 geometric possibilities above have

the 3 categorical analogues as follows:

(1) Db(Z ′
λ) = ⟨E0,OYλ′−1 (w),⋯,OYλ′−1 (w +m∆,W − 1)⟩ where E0 is a copy of

Db(Ẑλ) embedded by φ−w−ηλ′+1.

(2) Db(Z ′
λ) = ⟨OZ′

λ
(w),⋯,OZ′

λ
(w +m∆,W − 1)⟩. In fact, Z ′

λ is just a weighted

projective space in this case and this is the standard Beilinson exceptional

collection of line bundles (up to overall tensoring with a line bundle).

(3) We get the trivial SOD of Db(Z ′
λ)

We denote the exceptional objects OYλ′−1 (w+ i−1) by Ei for i > 0 and our SODs

by Db(Z ′
λ) = ⟨E0,E1,⋯,Em∆,W

⟩ (where some of the Ei can be empty depending on

the case). Here the labelling matches up with that of the points of the discriminant

in π−1(b) that we saw in Figures 11 and 12. So E0 is the single category associated

with the single puncture of π−1(b) at a non-principal component ∇W (in Cases 1

and 3) and Ei for i > 0 are the m∆,W exceptional objects associated with the m∆,W

punctures in π−1(b) at ∇pr.

Remark 6.11. These SODs are the simplest case of the more general story which

we describe in §10.

Remark 6.12. There are two properties of these SODs that we will crucially use in

the proof of Theorem 6.15.

● (Lefschetz property) Ei+1 = Ei(1) for i > 0.

● (Window property) RE1(E0) = E0(uW ). This is just Remark 4.22, where

we use that O(uW ) has λ′−1 weight 1.

Now, as in Corollary 4.28, our SOD Db(Z ′
λ) = ⟨E0,E1,⋯,Em∆,W

⟩ gives rise to

fractional windows F 0
λ(⟨Ui,Vi⟩) where Ui is the category generated by the first i

pieces of this SOD and Vi is generated by the remaining pieces. We then define

ρW (γ0,i
C1,C2

) to be the fractional window equivalence χ0 using this window.

Remark 6.13. Note that, for all the SODs above, one of Ui,Vi is always proper and

so, by Lemma 4.25, we do indeed get fractional window equivalences.
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Remark 6.14. The notation here is supposed to fix some of the ambiguity in the

definition of ρW , as in Remark 6.10. Namely, if we have fixed an SOD for the wall

W , the superscripts in γ0,i
C1,C2

tell us to use the fractional window with λC1,C2-weight

0 and A given by the i-th category Ui.

We now prove:

Theorem 6.15. In each of the 3 cases, any choice of SOD of Db(Z ′
λ) of the form

above gives a representation ρW ∶ π1(VW ,{p1, p2}) → Cat1 which extends the large

radius representation from Proposition 5.20.

Remark 6.16. For the rest of this section, we simplify notation by letting X0 denote

the phase of the VGIT on the wall W , i∗− be the restriction from Db(X0) to Db(XC1)
and i∗+ be the restriction from Db(X0) to Db(XC2). E′ ∶= E⊗κ∨λ∣Zλ for E ∈Db(Z ′

λ).
Recall the functor iλ,w ∶ Db(Zλ)w → Db(X0) from Lemma 4.6. For an object or

subcategory E in Db(Z ′
λ), we let E± ∈Db(X0) be the image of E under iλ±,0.

Example 6.17. For the wall W2 in the Octahedron VGIT, we have seen in Example

6.8 that only the principal component contributes to the discriminant and so we

are in case 2. Moreover, ∇pr is a conic in F = P2 so mW = m∆,W = 2 and we have

just one additional path γ0,1
C1,C3

. In Example 5.23, we have calculated Z ′
λ = P1

x1,x2

where λ = λC1,C3 = (0,1). Thus Z ′
λ is not minimal. Indeed, the VGIT on W2 has

two weights β1 = β2 = 1 ∈ L∨ ∶= Z and so the minimal phase of this VGIT, which we

called Ẑλ earlier, is empty. The SOD for case 2 is then Db(P1) = ⟨O(w),O(w + 1)⟩
for any w ∈ Z.

We’ll now describe explicitly the fractional window equivalence associated with

the SOD Db(P1) = ⟨O,O(1)⟩ – that is, the case w = 0 of the SOD above. First,

we need to understand the fractional window F 0
λ(⟨O,O(1)⟩). By definition, a line

bundle O(β) in Db(X0) belongs to it if it has λ-weights in [0,2] and has:

HomZ′
λ
(O(β)∣Z′

λ
,O) = 0 and HomZ′

λ
(O(1), (O(β)⊗ κλ)∣Z′

λ
) = 0

where κλ ∶= det(NYλ/X0
). Since we know Yλ = {x5 = x6 = 0}, we see that κλ ≅

O(−2,−2). Writing β = (a, b) ∈ Z2 (as in Example 5.23) so thatO(a, b)∣Zλ ≅ O(a) on

P1, we see that O(a, b) satisfies these conditions precisely when b ∈ [0,2] and if b = 0,

a = 1 and if b = 2, a = 2. By Remark 4.13, these line bundles generate F 0
λ(⟨O,O(1)⟩).

Thus ρW (γ0,1
C1,C3

) can be described as the functor sending OXC1
(a, b) for these

values of (a, b) to OXC3
(a, b). As with the window equivalences in Example 5.23,

ρW (γ0,1
C1,C3

) will act non-trivially on other line bundles.

We can again interpret this geometrically by considering what the auto-equivalence

ρW ((γ0
C1,C3

)−1 ○ γ0,1
C1,C3

) looks like. It turns out (see Remark 6.24) that this is a

spherical twist about OP1×P1 , whereas we saw in Example 5.23 that the window

shift was a twist about the whole category supported on the locus P1 × P1 which

collapses as we cross W2. So the new auto-equivalences capture some extra geo-

metric structure in the collapsing locus, in this case individual destabilising objects

supported on this locus.
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We now turn to the proof. Recall the presentation of π1(VW ,{p1, p2}) after

Remark 6.7. As we have already constructed ρW on large radius paths in Proposi-

tion 5.20, we need only check that the monodromy relations hold under ρW on the

(strictly) near large radius paths γ0,i
C1,C2

for i = 1, . . . ,mW − 1. Note that Case 3 is

therefore already solved. Explicitly, we need to show that:

ρW (αuWC2
○ γ0,i

C1,C2
○ α−uWC1

) = ρW (m(γ0,i
C1,C2

)) for i = 1,⋯,mW − 1

We do this by expressing both functors as sequences of lifts into certain fractional

windows followed by restriction to a phase. We then simplify this description of

these functors by using the mutations we introduced in §4.1. This allows us to

rewrite the monodromy relation above as the equality of two sequences of mutation

functors associated to certain subcategories of Db(X0). We then check that these

functors agree by (general calculus of mutations and) the Lefschetz and window

properties of our SOD from Remark 6.12.

We first note that tensoring by a line bundle with λ-weight 0, lifting into a

fractional window and then tensoring by the inverse line bundle can be described

as lifting into a different fractional window:

Lemma 6.18. ρW (αuWC2
○ γ0,i

C1,C2
○ α−uWC1

) = i∗+ ○ (i∗−)−1 where (i∗−)−1 is the lift from

Db(XC1) into F 0
λ(⟨Ui(uW ),Vi(uW )⟩).

Proof. By definition, the functor on the left-hand side is ⊗O(uW ) ○ ρW (γ0,i
C1,C2

) ○
⊗O(−uW ). First note that the fractional window in the statement makes sense as

⟨Ui(uW ),Vi(uW )⟩ is an SOD of Db(Z ′
λ) as uW has λ-weight 0. It is not hard to

see that

F 0
λ(⟨Ui(uW ),Vi(uW )⟩) = F 0

λ(⟨Ui,Vi⟩)⊗O(uW )

Given this, if G ∈ F 0
λ(⟨Ui,Vi⟩) is a lift of F (−uW ) ∈Db(XC1), then G(uW ) is a lift

of F to F 0
λ(⟨Ui(uW ),Vi(uW )⟩). Hence (i∗−)−1(F ) ≅ G(uW ) and so:

ρW (αuWC2
○ γ0,i

C1,C2
○ α−uWC1

)(F ) = G∣XC2
⊗O(uW ) = G(uW )∣XC2

= i∗+ ○ (i∗−)−1(F )

�

Now we turn to understanding ρW (m(γ0,i
C1,C2

)). Recall the disk D (see §5.2) in

π−1(b) containing all the punctures at points of the discriminant (we’ll assume it

contains the basepoints p1, p2 too) and which we assume is in the standard form

from Figure 10. As m(γ0,i
C1,C2

) ∈ π1(D,p1, p2) and π1(D,p1, p2) is freely generated

by γ0,i
C1,C2

(for i = 0,⋯,mW − 1) and γ′ (see Figure 11), ρW (m(γ0,i
C1,C2

)) can be

described via a sequence of lifts into the fractional windows F 0
λ(⟨Ui,Vi⟩) followed

by restriction to a phase. Moreover Figure 12 tells us explicitly what this sequence

is. It therefore seems natural to split these functors into two by introducing:

● Additional basepoints ei (for i = 0,⋯,mW ) in D whose corresponding cat-

egories ρW (ei) ∶= F 0
λ(⟨Ui,Vi⟩) = F

−η
λ−1(⟨V ′n−i ⊗ ωZ′

λ
,U ′n−i⟩)

● Additional paths δ±i such that ρW (δ±i ) ∶= i∗±.

These are shown in Figure 13 (T) where n ∶=mW .
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We can naturally incorporate the discussion of mutations in §4.1 into this picture

by introducing additional paths ε±i as shown in Figure 13 (T). Then π1(D,{pi, ej})
can be presented with generators ε±i , δ

±
i shown in Figure 13 (T) subject to the

relations δ±i ε
±
i = δ±i−1 for i = 1, . . . , n.

Remark 6.19. In this presentation, γ0,i
C1,C2

corresponds to the path δ+i ○ (δ−i )−1.

Moreover, Corollary 4.28 tells us that ρW ((δ+i )−1 ○ δ+i−1) = RE+
i

and so we define

ρW (ε+i ) ∶= RE+
i
. Similarly Corollary 4.29 tells us to define ρW (ε−i ) ∶= LF ′−

i
, where we

recall that ⟨Fm∆,W
,⋯, F0⟩ is the left-dual SOD to Db(Z ′

λ) = ⟨E0,⋯,Em∆,W
⟩. Then

ρW in this presentation is depicted in Figure 13 (B).

What’s more, we have shown that ρW extends to a functor on π1(D,{pi, ej}).
Noting that ρW (e0) = F 0

λ(⟨U0,V0⟩) =Wλ(0) and ρW (en) = F 0
λ(⟨Um∆,W

,Vm∆,W
⟩) =

Wλ(1), we see that ρW agrees with our representation on large radius paths in

π1(D,{p1, p2}).

Remark 6.20. We might worry that to understand ρW (m(γ0,i
C1,C2

)) we have to un-

derstand the dual SOD too, which will involve more complicated objects. Actually,

it turns out that we don’t, because the ε−j appearing in the description of m(γ0,i
C1,C2

)
in the presentation above only come in terms of the form ε−j ○ ⋯ ○ ε−1 . By Theorem

4.27, the associated functor ρW (ε−i ○ ⋯ ○ ε−1) = LV ′−n−i and V ′−n−i = ⟨E′−
1 , . . . ,E

′−
i ⟩ can

be described in terms of only the Ei rather than the dual Fi.

Remark 6.21. Before we launch into the proof, it will be helpful to recall the com-

binatorics of mutations. Recall that if E,F are two subcategories, L⟨E,F ⟩ = LE ○LF
and RE = L−1

E . Therefore we have that LE○LF = L⟨E,F ⟩ = L⟨F,RF (E)⟩ = LF ○LRF (E).
In particular, if E and F are orthogonal, LE and LF commute.

We now turn to the proof of the theorem.

Proof. We know from Lemma 6.18 that ρW (αuWC2
○γ0,i

C1,C2
○α−uWC1

) can be expressed

as a particular fractional window equivalence. Comparing Figures 12 and 13, we

see how to write ρW (m(γ0,i
C1,C2

)) in terms of lifting into certain fractional windows

and restricting to phases. Here we write this expression down in both cases and

mess around with mutations to get the result. We start with Case 2, as it’s simpler.

Case 2: Compare Figures 12 (R) and 13. We see that ρW (m(γ0,i
C1,C2

)) can be

expressed as the composition of functors from Db(XC1) to Db(XC2) going clockwise

around the following diagram, where we note that F ′−
1 = E′−

1 (as F1 = E1). Moreover,

we have seen that ρW (αuWC2
○γ0,i

C1,C2
○α−uWC1

) can be expressed as the functor around

the bottom.

F 0
λ(⟨Ui+1,Vi+1⟩) F 0

λ(⟨U1,V1⟩) Wλ(0)

Db(XC1) F 0
λ(⟨Ui(uW ),Vi(uW )⟩) Db(XC2)

i∗−

L⟨E+
2
,...E+

i+1
⟩ RF ′−

1
=RE′−

1

i∗+

i∗−

i∗+

LU+
i
(uW )

LE′−
1
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p1 p2

e0

e1

⋮

en−1

en

δ−0

δ−1

δ−n−1

δ−n

δ+0

δ+1

δ+n−1

δ+n

ε−1

ε−2

ε−n−1

ε−n ε+n

ε+n−1

ε+2

ε+1

Db(XC1) Db(XC2)

Wλ−1(−η + 1) =Wλ(0)

F−η
λ−1(⟨V

′
n−1 ⊗ ωZ′

λ
,U ′n−1⟩) = F

0
λ(⟨U1,V1⟩)

⋮

F−η
λ−1(⟨V

′
1 ⊗ ωZ′

λ
,U ′1⟩) = F

0
λ(⟨Un−1,Vn−1⟩)

Wλ−1(−η) =Wλ(1)

i∗−

i∗−

i∗+

i∗+

LF ′−
1

LF ′−
2

LF ′−
n−1

LF ′−
n

RE+
n

RE+
n−1

RE+
2

RE+
1

Figure 13. Generators for π1(D,{pi, ej}) (T) and the corre-
sponding functor ρW (B)

So we are reduced to showing this diagram commutes. Now we remove any reference

to the phases (and so only have to deal with mutating subcategories of Db(X0)) by

using Lemma 6.22 to express the compositions (i∗±)−1 ○ i∗± in terms of mutations –

these are indicated by the dotted lines in the diagram above. Thus we are reduced

to showing:

LE′−
1
○LU+i (uW ) = L⟨E+

2 ,...E
+
i+1⟩ ○LE′−

1

But U+i (uW ) = ⟨E+
2 ,⋯,E+

i+1⟩ by the Lefschetz property and these subcategories are

orthogonal by Lemma 6.23. Hence we are done by Remark 6.21.

Case 1: Compare Figures 12 (L) and 13. We see that ρW (m(γ0,i
C1,C2

)) can be

expressed as the composition of functors from Db(XC1) to Db(XC2) going clockwise

around the following diagram, noting that F ′−
0 = E′−

0 (as F0 = E0) and RF ′−
0
○RF ′−

1
=

R⟨E′−
0 ,E

′−
1 ⟩ by Remark 6.20. Moreover, we have seen that ρW (αuWC2

○ γ0,i
C1,C2

○ α−uWC1
)

can be expressed as the anti-clockwise functor with same source and target.
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F 0
λ(⟨Ui+1,Vi+1⟩) Wλ(0) F 0

λ(⟨U1,V1⟩) F 0
λ(⟨U2,V2⟩)

Db(XC1) F 0
λ(⟨Ui(uW ),Vi(uW )⟩) Db(XC2) Wλ(0)

i∗−

LU+
i+1

LF ′−
0
=LE′−

0
RE+

1

R⟨E′−
0
,E′−

1
⟩

i∗−

i∗+

LE′−
1

LU+
i
(uW )

i∗+

So we are reduced to showing this diagram commutes. Now we remove any

reference to the phases (and so only have to deal with mutating subcategories of

Db(X0)) by using Lemma 6.22 to express the compositions (i∗±)−1 ○ i∗± in terms of

mutations – these are indicated by the dotted lines in the diagram above. Thus we

are reduced to showing:

LE′−
0
○L⟨E+

0 ,...E
+
i+1⟩ ○LE′−

1
= LE+

1
○LE′−

0
○LE′−

1
○LU+i (uW )

By Remark 6.21, swapping the first pair of functors in the right-hand functor

and then swapping the second pair of functors shows that the right-hand functor

equals:

LE′−
0
○LRE′−

0
(E+

1 ) ○LLE′−
1
(U+i (uW )) ○LE′−

1

By Lemma 6.23, E+
1 and E′−

0 are orthogonal (noting that E1 has compact support)

and hence RE′−
0
(E+

1 ) = E+
1 .

By the Lefschetz property of Ei for i > 0, U+i (uW )) = ⟨E+
0 (uW ),E+

2 , . . . ,E
+
i+1⟩.

Since by Lemma 6.23, E+
i and E′−

1 are orthogonal for i > 1, LE′−
1
(E+

i ) = E+
i . Simi-

larly, noting that E1 is compactly supported and, by the window property,

Hom(E0(uW ),E1) = Hom(RE1(E0),E1) = Hom(E0, LE1(E1)) = 0

Lemma 6.23 gives LE′−
1
(E+

0 (uW )) = E+
0 (uW ). Thus LE′−

1
(U+i (uW )) = U+i (uW ) and

the right-hand functor equals:

LE′−
0
○L⟨E+

1 ,E
+
0 (uW ),E

+
2 ,...E

+
i+1⟩) ○LE′−

1

Since, by the window property,

⟨E+
1 ,E

+
0 (uW ),E+

2 , . . .E
+
i+1⟩ = ⟨E+

1 ,RE+
1
(E+

0 ), . . . ,E+
i+1⟩ = ⟨E+

0 ,E
+
1 , . . . ,E

+
i+1⟩

we see that this functor agrees with the left-hand functor.

�

We now prove the two missing lemmas from the proof of Theorem 6.15. The first

tells us that we can rewrite certain compositions of functors in the commutative

diagrams in that proof as left mutations.

Lemma 6.22. (i∗+)−1 ○ i∗+ ∶ F 0
λ(⟨Ui(uW ),Vi(uW )⟩) → Wλ(0) is the left mutation

LU+i (uW ). Similarly (i∗−)−1 ○ i∗− ∶ F 0
λ(⟨Ui(uW ),Vi(uW )⟩) → F 0

λ(⟨Ui+1,Vi+1⟩) is the

left mutation LE′−
1
.
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Proof. To check that the compositions are as claimed, we first check that the mu-

tations indicated do indeed map the source to the target. For the compositions

(i∗+)−1 ○ i∗+, this follows from Theorem 4.27 with A = Ui(uW ) and B = Vi(uW ). For

the compositions (i∗−)−1 ○ i∗−, it similarly follows from Theorem 4.27 after we rewrite

the relevant categories in terms of λ−1 using Lemma 4.25. Explicitly, we have:

F 0
λ(⟨Ui(uW ),Vi(uW )⟩) = F −η

λ−1(⟨V ′n−i(uW )⊗ ωZλ ,U ′n−i(uW )⟩)

F 0
λ(⟨Ui+1,Vi+1⟩) = F −η

λ−1(⟨V ′n−i−1 ⊗ ωZλ ,U ′n−i−1⟩

By the Lefschetz property , we see that:

Vi(uW ) = ⟨Ei+1, . . . ,Em∆,W
,Em∆,W

(uW )⟩ = ⟨Vi+1,Em∆,W
(uW )⟩

Thus, since ωZλ ≅ O(−m∆,WuW ) and Ei(uW ) = Ei+1 for i > 0, Vi(uW ) ⊗ ωZλ =
⟨Vi+1 ⊗ ωZλ ,E1⟩. Hence V ′n−i(uW )⊗ ωZλ = ⟨V ′n−i−1 ⊗ ωZλ ,E′

1⟩.
By Corollary 4.28:

LE′−
1

maps F −η
λ−1(⟨V ′n−i(uW )⊗ωZλ ,U ′n−i(uW )⟩) to F −η

λ−1(⟨V ′n−i−1⊗ωZλ , ⟨E1,Un−i(uW )⟩′⟩)

But we know that ⟨V ′n−i−1⊗ωZλ ,U ′n−i−1⟩ is an SOD ofDb(Zλ−1)−η so ⟨E1,Un−i(uW )⟩′ =
U ′n−i−1 and hence:

F −η
λ−1(⟨V ′n−i−1 ⊗ ωZλ , ⟨E1,Un−i(uW )⟩′⟩) = F −η

λ−1(⟨V ′n−i−1 ⊗ ωZλ ,U ′n−i−1⟩)

Finally, it remains to show that the mutation functors agree with (i∗±)−1 ○ i∗±.

This follows immediately by noting that, for any E ∈ Db(Z ′
λ), E± is supported on

Yλ± and hence E±∣X± = 0. So the claim follows by the formula for left mutation. �

Lemma 6.23. If E,F ∈ Db(Z ′
λ) are such that Hom(F,E) = 0 and at least one is

compactly supported, then E′− and F + are orthogonal.

Proof. HomDb(X0)(E′−, F +) = HomDb(Z′
λ
)(E′−∣Z′

λ
, F ) using Lemma 4.6. As E− is

supported on Yλ−1 (of codimension c in X0), we can use the Koszul resolution to

show that E−∣Zλ = E ⊗ (⊕i=0,...,cΛ
iN ∨

Yλ−1 ,X0
)∣Zλ . As E and κ∨λ have λ-weight 0 and

η respectively:

E′−∣Z′
λ
= (E− ⊗ κ∨λ)∣Zλ = E ⊗wtλ=−η(⊕i=0,...,cΛ

iN ∨
Yλ−1 ,X0

)∣Zλ ⊗ κ∨λ∣Zλ

As all λ-weights of N ∨
Yλ−1 ,X0

∣Zλ are strictly negative and −η is the sum of all such

weights, only det(N ∨
Yλ−1 ,X0

)∣Zλ has λ-weight −η, so E′−∣Z′
λ
= E ⊗ (κ∨λ−1 ⊗ κ∨λ)∣Z′λ .

Taking determinants of the decomposition:

TX0∣Zλ = TZ ′
λ ⊕NYλ,X0 ∣Zλ ⊕NYλ−1 ,X0 ∣Zλ

along Zλ, we see that ωX0 ∣Zλ ≅ ωZ′λ ⊗ (κ∨λ ⊗ κ∨λ−1)∣Zλ . As X0 is Calabi–Yau, we see

that (κ∨λ ⊗ κ∨λ−1)∣Zλ ≅ ω∨Z′
λ

and hence E′−∣Z′
λ
= E ⊗ ω∨Z′

λ
. Using this:

HomDb(X0)(E
′−, F +) = HomDb(Z′

λ
)(E′−∣Z′

λ
, F ) = HomDb(Z′

λ
)(E ⊗ ω∨Z′

λ
, F )

= HomDb(Z′
λ
)(E,F ⊗ ωZ′

λ
) = Hom(F,E) = 0
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by Serre duality on Z ′
λ (which is valid as at least one of E,F is compactly supported)

and Hom(F,E) = 0.

Similarly, using the right adjoint in Lemma 4.6:

HomDb(X0)(F
+,E′−) = HomDb(Z′

λ
)(F, (E−)∣Z′

λ
) = Hom(F,E) = 0

�

Remark 6.24. We can alternatively prove this result in terms of fundamental groups.

It follows from [25] that the corresponding auto-equivalences ρW ((γ0,j−1
C1,C2

)−1○γ0,j
C1,C2

)
(known as fractional window shifts) can be described as the twist about the spher-

ical functor F0 ○ iEj ∶ ⟨Ej⟩ → Db(XC1) where iEj ∶ ⟨Ej⟩ → Db(Z ′
λ) is the inclusion

of the j-th piece of the SOD and F0 is the functor from Remark 4.19.

This proof is slightly less complicated than the one above as all the mutations

are hidden in the description of the fractional window shifts. We have chosen the

proof above because it maintains the groupoid perspective which we adopt in this

thesis.

Remark 6.25. Having constructed this representation of π1(VW ) for each wall W ,

we can try to glue these all together along the large radius regions VC near torus

fixed points. We do this exactly as in Remark 5.16. By the (groupoid) van-Kampen

theorem, this then give us a representation of the fundamental groupoid of a tubular

neighbourhood of the toric boundary in any 2d FIPS. This is slightly more useful

than the analogous large radius representation in Remark 5.24 as this groupoid

should generate the fundamental groupoid of the FIPS. This follows from the Lef-

schetz hyperplane theorem (see Remark 9.12).

However, as in Remark 5.24, the fact that ρW is not canonical (see Remark

6.10) means that this abstract gluing is not very helpful when we try to extend the

representation to π1(FIPS). In fact, ρW is even less canonical on near large radius

paths as it depends on a choice of SOD, so the situation is only going to be worse.

7. Fundamental group representations of a 2d FIPS

From §6, we understand how to construct a representation on each region VW

near large radius. However (see Remark 6.25) gluing these regions and the rep-

resentations on them together arbitrarily is not a good idea. In this section, we

use a pencil on the secondary stack F to help us pick these regions near different

curves Z(W ) in the toric boundary in such a way that the relations between paths

in these different regions become transparent.

In this section, we shall carry out this approach successfully for two examples,

namely the Octahedron VGIT and the Pentagon VGIT and, as a result, will be

able to construct the full representation of π1(FIPS). The strategy for doing so is

the same in both cases:

(1) (Topology) Apply the Zariski–van-Kampen theorem (see Theorem 7.3) to

our pencil to find a presentation for π1(FIPS) in terms of a specific choice
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of near large radius regions (adapted to our pencil) plus some additional

explicit relations R.

(2) (Magic windows) Implement the relations in R using (fractional) magic

windows (see §4.2).

Before we launch into these examples, it will be useful to present the Zariski–

van-Kampen theorem in a suitably groupoid way.

7.1. The Zariski–van-Kampen Theorem. In this section, we describe a gen-

eral technique to understand the fundamental group(oid) of a 2-dimensional FIPS

using a pencil of curves, based on ideas of Zariski and van-Kampen. For a good

introduction with lots of pictures, we refer to [13].

Suppose F is a (connected) complex surface with a surjective morphism f ∶ F ↠
C onto a curve C. We assume additionally that:

(1) Away from a finite set of critical values Z ⊂ C, f ′ ∶ F ′ → B is a locally trivial

fibration where B ∶= C/Z, F ′ ∶= f−1(B) ⊂ F and f ′ = f ∣F ′ . We denote by

Fb the fibre over b ∈ B.

(2) The critical fibres f−1(z) for all z ∈ Z are irreducible.

(3) We have picked points {bi} in B for i = 1, . . . , n.

(4) There are disjoint continuous sections sj ∶ B → F ′ of f ′ for j = 1, . . . ,m.

We define the basepoints in the fibre Fbi to be pij ∶= sj(bi).

Remark 7.1. For Theorem 7.3, it is enough to have picked basepoints pij and

then have sections (sj)∗ ∶ π1(B,{bi}) ↪ π1(F ′,{pij}) of f ′∗ at the level of π1 for

j = 1, . . . ,m.

Recall that, if B ⊂ F is an irreducible hypersurface, a meridian of B (see [13],

Definition 4.13 for the precise definition) is roughly a loop in F /B given by travelling

from your basepoint to nearby a smooth point of B, doing a small loop in F /B
around this point and going back to your basepoint along the same path. Then we

have:

Proposition 7.2 ([13], Proposition 1.2). For fixed j, k, if i denotes the inclusion

F /B ⊂ F then ker(i∗ ∶ π1(F /B,pjk)↠ π1(F, pjk)) is the normal subgroup generated

by a meridian of B.

This forms an important part of the proof of the following theorem, whose fun-

damental group version is standard (see, for example, [13], §2).

Theorem 7.3 (Groupoid version of the Zariski–van-Kampen theorem [35, 37]).

π1(F,{pij}) is generated by:

π1(Fbi ,{pij}∩Fbi) (one copy for each i) and (sj)∗(π1(B,{bi})) (one copy for each j)

subject to the relations:

● γ′z = e where γ′z is a meridian in F around the critical fibre f−1(z) for z ∈ Z
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● the monodromy relations (sl)∗(α) ○ γ ○ (sk)∗(α−1) = mα(γ) where α ∈
π1(B, bi, bj), γ ∈ π1(Fbi , pik, pil) for any i, j, k, l and mα(γ) ∈ π1(Fbj , pjk, pjl)
denotes the monodromy of γ along α.

(Sketch). As in [13], §5, we can define monodromy along any path in the base for

a locally trivial fibration by the homotopy lifting extension property. Then the

same argument which shows the fundamental group of the total space of such a

fibration (with a section) is the semi-direct product of the fundamental group of

the fibre with the fundamental group of the base (where the latter acts on the

former by monodromy), shows, by (1) and (4), that π1(F ′,{pij}) is generated by

π1(Fbi ,{pij}∩Fbi) (one copy for each i) and (sj)∗(π1(B,{bi})) (one copy for each

j) subject to (sl)∗(α) ○ γ ○ (sk)∗(α−1) =mα(γ).
Note that the map induced by inclusion i∗ ∶ π1(F ′,{pij}) → π1(F,{pij}) is full

as we are deleting fibres which are of real codimension 2. Its kernel consists only

of loops and ker(i∗)pij = ker(i∗ ∶ π1(F ′, pij) → π1(F, pij)). By Proposition 7.2 and

(2), we know that this is generated by a meridian γ′z around the critical fibre f−1(z)
for z ∈ Z. �

Remark 7.4. For our applications, we are always going to take f coming from

a choice of pencil f̂ ∶ F ⇢ P1 on the secondary stack F. Then so long as the

basepoints of f̂ are contained in the discriminant, we can take F = FIPS and f to

be the morphism f ∶= f̂ ∣FIPS ↠ C ⊂ P1 with image C.

Remark 7.5. One particularly nice case of Theorem 7.3 is when the section sj ex-

tends over z ∈ Z. If we denote this extension by sj too, then sj ○ γz is a meridian

around the critical fibre f−1(z) where γz ∈ π1(B,{bi}i) is (up to change of base-

point) a sufficiently small loop in B around z. As such, we can take γ′z = sj ○ γz in

Theorem 7.3. If we just have sections on π1 (see Remark 7.1), then the analogue

of the condition that sj extends over z ∈ Z is that (sj)∗(γz) = e in π1(F,{pij}).

Example 7.6. Let’s take F to be the complement in C2
X,Y of the hyperplanes

A ∶= {X = 1} ∪ {Y = 1} and the morphism f given by projection f ∶ (X,Y ) ↦ X.

So C = C /{X = 1} and we have:

(1) f is a fibration over C (with fibre Fb ≅ CY /{Y = 1}) and so B = C and

Z = ∅.

(2) Nothing to check

(3) Take b1, b2 ∈ B with X-coordinate ∈ R>0 small and large respectively. These

are shown at the bottom of Figure 14.

(4) Choose two disjoint sections sj(X) = (X, εj) for εj ∈ R>0 small and large

respectively. So we have 4 basepoints p11, p21, p22, p12.

Here the sections extend over Z = ∅ trivially and so, using Remark 7.5, Theorem

7.3 says that π1(F,{pij}) is generated by π1(Fbj ,{pj1, pj2}) for j = 1,2 and sj(γk)
for j, k = 1,2 where γk ⊂ B are shown in blue in Figure 14 and freely generate
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b1 b2X = 1
γ2

γ1

Increasing ∣X ∣

Arg(X)

p11

p12

p21

p22

Fb1 Fb2

α4β4 α2 β2

α1

β1

β3

α3∣Y ∣

Arg(Y )

Figure 14. Generators for fundamental groupoids of fibres and
base in Example 7.6

π1(B,{b1, b2}). Moreover, since Z = ∅, we only have monodromy relations. As f is

a trivial fibration and we have picked trivial sections, monodromy along any path

is trivial.

Pick free generators for π1(Fbj ,{pj1, pj2}) as shown in blue in Figure 14, where

we are drawing the fibres by projecting onto CY . Call s1(γ1) =∶ α1, s2(γ1) =
β3, s1(γ2) = β1 and s2(γ2) = α3.

Finally we check that monodromy gives the following relations:

Monodromy along γ1:

α1 ○ α4 ○ β−1
3 = β2, β3 ○ β4 ○ α−1

1 = α2

Monodromy along γ2:

β1 ○ β2 ○ α−1
3 = α4, α3 ○ α2 ○ β−1

1 = β4

Remark 7.7. This description agrees with the Deligne groupoid of the real hyper-

plane arrangement given by A (see [29, 30]).

7.2. The Octahedron VGIT. Here we revisit the Octahedron VGIT from §5.3,

which is visibly not quasi-symmetric (see Definition 8.1). Our aim is to construct a

representation of its fundamental groupoid (see Theorem 7.16) following the strat-

egy outlined at the start of this chapter. As such, the next section covers the

topology and the subsequent section constructs the required magic windows.
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7.2.1. Topology using Zariski–van-Kampen. In this section, we apply the Zariski–

van-Kampen theorem to describe the topology of the FIPS for the Octahedron

VGIT. The ultimate aim is to find a presentation for π1(FIPS) in terms of specific

near large radius regions plus some extra explicit relations.

Recall that F ≅ P2 with coordinates [x, y, z] and, in line with Remark 7.4, take the

pencil x = bz where b ∈ C is a coordinate on the base. This has a unique basepoint

at p1 ∶= [0,1,0] and, since the whole toric boundary is in the discriminant, we get

a morphism:

f ∶ FIPS↠ C, [x, y, z]↦ x/z

where the image C = C∗
b . Note that this agrees with the map π′ from §5.3.

Remark 7.8. In coordinates X = x/z, Y = y/z on the FIPS ⊂ (C∗)2
X,Y , f(X,Y ) =X

and, using Horn uniformisation (see (4) in §3.6), there are two points of ∇pr in the

fibre X = b with Y -coordinates (1 ±
√
b)2.

Notation: p2 ∶= [1,0,0], p3 ∶= [0,0,1]. Let Z(Wi) be the torus-invariant curve con-

necting pi+1, pi+2 where the indices are read modulo 3 and Wi be the wall between

the corresponding chambers, as labelled in Figure 8.

We now check that all the conditions in the Zariski–van-Kampen Theorem (The-

orem 7.3) are satisfied:

(1) Since the elements of the pencil in F are ≅ P1 and the discriminant is

a smooth conic plus the toric boundary, the generic fibre Fb of f is ≅
C∗ /{2 points}. One checks that this is a locally trivial fibration over C/{b =
1}. However, as b approaches 1, one of the points of the conic approaches

{Y = 0} in the fibre and so the critical locus Z = {b = 1} ⊂ C. The base B

is shown at the bottom of Figure 16.

(2) f−1(1) ≅ C∗ /{1 point} is irreducible.

(3) Pick two basepoints in B given by b = b1 ∈ R>0 sufficiently large and b =
b2 ∈ R>0 sufficiently small. Then π1(B,{b1, b2}) is the free groupoid on the

paths ζ1, ζ2 and ζ3 shown in blue at the bottom of Figure 16.

(4) Pick two sections sj of f ′ for j = 1,2, which we shall choose to lie in {Y = εj}
for ε1 ∈ R>0 sufficiently large and ε2 ∈ R>0 sufficiently small. By Remark 7.1,

we need only define lifts of ζi for i = 1,2,3. Defining sj(b) ∶= (b, εj) ∈ C2
X,Y ,

we check that sj(ζi) are such lifts.

Remark 7.9. Since the X-coordinates of the two points in ∇pr ∩ {Y = ε1} have

large modulus, we have that s1(γz) = e where (as in Remark 7.5) γz is a small loop

in B around z = 1. On the other hand, the X-coordinates of the two points in

∇pr ∩{Y = ε2} are close to X = 1 and so s2(γz) (in addition to looping X = 1) loops

around them too. Hence s2(γz) is not a meridian around the fibre F1.

Then, using Remarks 7.5 and 7.9, the Zariski–van-Kampen Theorem (Theorem

7.3) gives us:
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Corollary 7.10. π1(FIPS,{pij}) is generated by:

π1(Fb1 ,{p11, p12}), π1(Fb2 ,{p21, p22}) and sj(ζi) for i = 1,2,3, j = 1,2

subject to the relation s1(ζ3) = s1(ζ2ζ3ζ−1
1 ) and the monodromy relations along ζi

(i = 1,2,3).

We now want to understand this presentation in terms of imposing additional

relations on π1(U) where U ⊂ FIPS is a specific collection of near large radius

regions in the FIPS glued together. Recall that the reason we want to do this is

that we know from §6 how to define a representation on π1(U) for free.

So how should we pick U so that it can be compared easily with the presentation

in Corollary 7.10? For this, we note that the choices made for the Zariski–van-

Kampen Theorem give some natural choices of near large radius regions. Our

choice of pencil on the FIPS means that Fbi are (1,1)-orbits and so Fb1 is the

push-off of Z(W3) defined by βW3 = (1,1). Similarly Fb2 is the push-off of Z(W2)
defined by βW2 = (1,1). The section s2 lies in an orbit of the 1-PS (1,0) and so

Im(s2) lives in the push-off of Z(W1) defined by βW1 = (1,0). Similarly Im(s1)
lives in the push-off of Z(W3) defined by βW3 = (1,0).

Remark 7.11. Note that βW1 is not fixed by the pencil itself but by the section s2

and so different sections (which mean that s2 lies in {XnY = ε} for different n) give

different natural choices for βW1 .

The corresponding near large radius regions in the FIPS defined by these choices

can be written explicitly as:

U1 ∶= {∣Y ∣ ≤ ε2}, U2 ∶= {∣X ∣ ≤ b2}, U3 ∶= {∣X ∣ ≥ b1}, U4 ∶= {∣Y ∣ ≥ ε1}

so that (for i = 1,2,3) Ui is the near large radius region near Z(Wi) (defined by

βW1 = (1,0), βW2 = βW3 = (1,1)). The images ∆i of the four subsets Ui under

the moment map µ ∶ P2 ↠ ∆ ∶= µ(P2) are shown in Figure 15 (R). Gluing them

together, we define U ∶= ⋃i=1,2,3,4Ui.

Remark 7.12. Because of how we chose βW2 and βW3 , we have that U3 = f−1(D1)
and U2 = f−1(D2) where Di is the punctured disk in C bounded by ζi for i = 1,2.

As we did at the end of §6.1, we now pick presentations of π1(Fbi ,{pi1, pi2}) as

free groupoids on the generators shown in blue in Figure 16, where the coordinate

on the fibres is Y . We use the notation for near large radius paths from §6.1 so that,

once an SOD on the wall Wi has been specified, we know what ρWi on these paths

is (see Remark 6.14). We have chosen these particular generators on the different

fibres to make the monodromy relations as simple as possible. We also pick free

generators for paths in Y = ε2 given by the two toric loops α
(1,0)
Ci

(for i = 2,3) and

the paths γ0,0
C2,C3

∶= s2(ζ3), γ0,1
C3,C2

shown in blue in Figure 17. We also define the

path γ0,1
C1,C3

∶= α(1,1)C3
○ γC1,C3 ○ α−1 ∈ π1(Fb2 ,{p21, p22}) where γC1,C3 is shown in

Figure 16.
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C2 C1

C3

αβ
C2

γ0,1
C2,C1

γ0,0
C1,C2

γ0,1
C1,C3

αβ
C1

γ0,1
C3,C2

γ0,0
C3,C1
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Figure 15. Generators of π1(U,{p11, p12, p22}) for the Octahe-
dron VGIT (L) and image of near large radius regions covering U
under the moment map (R)
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α
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γ0,0
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ζ1 ζ2ζ3

Increasing ∣b∣

Arg(b)

B

Figure 16. Generators for π1(Fbi ,{pi1, pi2}) and π1(B,{b1, b2}).
The 2 points in ∇pr in the fibre Fb are Y = (1 ±

√
b)2

Remark 7.13. We note that the sections sj(ζi) for i = 1,2 actually define toric

loops corresponding to (1,0). To be more in line with the notation of the previous

sections, we therefore relabel α
(1,0)
Ci

∶= si(ζ1) for i = 1,2 and α
(1,0)
C3

∶= s2(ζ2).

Now we repackage the presentation in Corollary 7.10 in terms of π1(U) and see

what’s left over. The near large radius region U2 can be described in terms of Fb2 ,

sj(ζ2) and monodromy along ζ2 (see Remark 7.12). Similarly U3 can be described

in terms of Fb1 , α
(1,0)
Cj

(for j = 1,2) and monodromy along ζ1. We’ll now see that the
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Figure 17. Free generators of π1({Y = ε2},{p12, p22})

ζ2 ζ3 ζ1

∣Y ∣

Arg(Y )

Figure 18. Monodromy of Fb around the 3 loops ζ1, ζ2 and ζ3

additional relations on π1(U) only come from monodromy along ζ3. More precisely,

we get:

Proposition 7.14. π1(FIPS,{p11, p12, p22}) is generated by π1(U,{p11, p12, p22})
subject to the relations:

(1) γ0,0
C2,C3

○ γ0,0
C1,C2

= γ0,1
C1,C3

(2) γ0,0
C3,C1

○ γ0,0
C2,C3

= γ0,1
C2,C1

(3) γ0,0
C1,C2

○ γ0,0
C3,C1

= γ0,1
C3,C2

Remark 7.15. Recall that the presentation in Corollary 7.10 used the 4 basepoints

pij . In the proposition above, we only use 3 of them (one near each pi). Happily,

there is a canonical equivalence π1(FIPS,{pij}) ≅ π1(FIPS,{p11, p12, p22}) using

the canonical (homotopy class of) path between p11 and p21 near p1 (see Remark

5.16) to identify p21 with p11. In fact, as s1 extends over b = 1, this path agrees

with s1(ζ3). We abuse notation and denote by the same symbols the images in

π1(FIPS,{p11, p12, p22}). For example, in π1(FIPS,{p11, p12, p22}) γ0,0
C3,C1

refers to

the path from p22 to p11 given by s1(ζ3)−1 ○ γ0,0
C3,C1

. Under these identifications,

π1(U,{p11, p12, p22}) is generated by the paths in Figure 15 (L).

Proof. For now, we work with all 4 basepoints pij . At the end, we will then remove

p21.

The monodromy around the loops ζi is shown in Figure 18, where we are pro-

jecting onto the Y -coordinate so the basepoints appear fixed and the path taken

by the discriminant is indicated by the arrows.
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Note that γ0,1
C3,C2

is not among the generators in Corollary 7.10. We claim that

we can write it in terms of them as γ0,0
C1,C2

○ s1(ζ−1
3 ) ○ γ0,0

C3,C1
. To see this, note that

(as Figure 16 makes clear) under the projection g ∶ (X,Y ) ↦ Y γ0,0
C1,C2

and γ0,0
C3,C1

map to inverse paths in B′ = C∗
Y /{Y = 1}. It is easy to see (because of the Z3-

symmetry of the VGIT or explicitly) that g defines a fibration over these paths. We

choose sections sj(b′) = (bj , b′) living inside X = bj and so s2(g(γ0,0
C3,C1

)) = γ0,0
C3,C1

and similarly s1(g(γ0,0
C1,C2

)) = γ0,0
C1,C2

. Therefore monodromy along such paths is

defined and following s1(ζ−1
3 ) along g(γ0,0

C1,C2
) gives a path in Y = ε2 from p22 to

p12 which is homotopic to γ0,0
C1,C2

○ s1(ζ−1
3 ) ○ γ0,0

C3,C1
. One checks that it is, in fact,

γ0,1
C3,C2

.

Now we package the presentation in Corollary 7.10 into pieces we understand

and see what’s left over. Note that, by Remark 7.12 and the Zariski–van-Kampen

theorem applied to U3, π1(Fb1 ,{p11, p12}), α(1,0)C1
, α
(1,0)
C2

plus the monodromy rela-

tions along ζ1 just give a copy of π1(U3,{p11, p12}). Similarly, π1(Fb2 ,{p21, p22}),
α
(1,0)
C3

, α plus the monodromy relations along ζ2 give a copy of π1(U2,{p21, p22}).
By definition, s1(ζ3) lives in U4/Int(U2) ∪ Int(U3). As we see from Figure 15,

we can think of the region U2 ∪ U3 ∪ U4 as the near large radius regions along

Z(W2) and Z(W3) glued together along a large radius region near p1. From this

perspective, s1(ζ3) is just the canonical path between p11 and p21 in this large

radius region. As such (see Remark 5.16), π1(U2 ∪ U3 ∪ U4,{pij}) is the groupoid

generated by π1(U2,{p21, p22}), π1(U3,{p11, p12}) and s1(ζ3) subject to the relation

s1(ζ3) = s1(ζ2ζ3ζ−1
1 ).

Therefore, packaging up our presentation of π1(FIPS) in this way, we see that

π1(FIPS) is generated by π1(U2 ∪U3 ∪U4) and s2(ζ3) = γ0,0
C2,C3

subject only to the

monodromy relations along ζ3.

Monodromy relations for ζ3: In terms of b, near b = 1 ζ3 is t↦ 1 + εe−πit for

t ∈ [0,1]). Then we get monodromy relations:

● γ0,0
C2,C3

○ α(1,1)C2
○ (γ0,0

C2,C3
)−1 = α(1,1)C3

● s1(ζ3) ○ α(1,1)C1
○ s1(ζ3)−1 = α

● γ0,0
C2,C3

○ γ0,0
C1,C2

○ s1(ζ3)−1 = γ0,1
C1,C3

● s1(ζ3) ○ γ0,1
C2,C1

○ (γ0,0
C2,C3

)−1 = γ0,0
C3,C1

If we use s1(ζ3) to identify p11 with p21, then, using s1(ζ2) = s1(ζ3ζ1ζ−1
3 ) and α =

s1(ζ3)○α(1,1)C1
○s1(ζ3)−1 to get rid of these generators, we see that π1(FIPS,{p11, p12, p22})

is generated by π1(U2 ∪U3 ∪U4,{p11, p12, p22}) and γ0,0
C2,C3

subject to relations (1)

and (2) and monodromy invariance for γ0,0
C2,C3

.

If instead we present π1(FIPS,{p11, p12, p22}) in terms of all the previous gen-

erators plus γ0,1
C3,C2

and all the old relations plus relation (3), then we see that

this presentation is generated by π1(U2∪U3∪U4,{p11, p12, p22}), γ0,0
C2,C3

and γ0,1
C3,C2

subject to relations (1),(2),(3) and monodromy invariance for γ0,0
C2,C3

. Packaging

γ0,0
C2,C3

and γ0,1
C3,C2

together to give the remaining generators of π1(U1) and noting

that the monodromy relation for γ0,1
C3,C2

must follow automatically since it holds in
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π1(FIPS), we see that π1(FIPS,{p11, p12, p22}) is generated by π1(U,{p11, p12, p22})
subject to relations (1),(2) and (3) as claimed. �

7.2.2. Fundamental groupoid representation. By Proposition 7.14, we know that

π1(FIPS) is generated by π1(U) where U is covered by near large radius regions.

Therefore, if we choose the SOD Db(Z ′
λ) = ⟨O(−uWi),O⟩, Theorem 6.15 gives us

the near large radius representation ρWi on π1(Ui) (for i = 1,2,3). Moreover, if

we include U4 too, Remark 6.25 tells us how to glue these all together to get a

representation of π1(U).
We now check that the 3 extra relations in Proposition 7.14 hold. We have

already noted in Example 4.34 that there are no magic windows in this example.

However, it turns out that there are fractional magic windows.

Theorem 7.16. π1(FIPS,{p11, p12, p22}) acts on the phases of the Octahedron

VGIT such that, near the curve Z(Wi), it recovers the representation ρWi above.

Proof. We note that

O,O(−1,0),O(−2,−1),O(−1,−1)

satisfy the grade restriction rules for λC2,C3 = (−1,1) (with wλ = 0) and λC3,C1 =
(0,−1) (with wλ = 0) and the fractional grade restriction rule for λC2,C1 = (−1,0)
(with wλ = 0) with respect to the SOD Db(ZλC2,C1 )0 = ⟨O(0,−1),O⟩. Moreover,

by the two standard Euler exact sequences on P1 × P1 pulled back to XC1 , the

restrictions of these 4 line bundles to XC1 generate Db(XC1). Therefore these form

a fractional magic window which, as in Remark 4.39, implements the relation (2).

Similarly,

O,O(0,1),O(1,2),O(1,1)

form a fractional magic window which satisfies the grade restriction rules for λC2,C3

(with wλ = 0) and λC1,C2 (with wλ = 0) and the fractional grade restriction rule for

λC1,C3 (with wλ = 0) with respect to the SOD Db(ZλC1,C3 )0 = ⟨O(−1,0),O⟩. This

implements the relation (1).

Finally,

O,O(1,0),O(0,−1),O(1,−1)

form a fractional magic window which satisfies the grade restriction rules for λC1,C2

(with wλ = 0) and λC3,C1 (with wλ = 0) and the fractional grade restriction rule for

λC3,C2 (with wλ = 0) with respect to the SOD Db(ZλC3,C2 )0 = ⟨O(1,1),O⟩. This

implements the relation (3). �

7.3. The Pentagon VGIT. We now introduce the Pentagon VGIT which, like

the Octahedron VGIT, is not quasi-symmetric (see Definition 8.1) and has a 2d

FIPS. The reason we are interested in this VGIT is that it occurs as one of the

boundary problems for the Triangle VGIT in §9 and, as such, forms a vital part of

the construction of the representation in that case.
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Figure 19. The polytope ∆ formed by the rays (L) and the sec-
ondary fan for the Pentagon VGIT with chambers labelled (R)

The Pentagon VGIT is the linear Calabi–Yau toric VGIT TL⟳ C5 specified by

the toric data L = Z2 → Z5 ÂÐ→ Z3 = N where:

Â =
⎛
⎜⎜⎜
⎝

1 0 1 0 0

1 2 0 1 0

1 1 1 1 1

⎞
⎟⎟⎟
⎠

Therefore the rays live in the height 1 affine hyperplane H = {z = 1} and ∆ is a

degenerate pentagon P (hence the name of the VGIT) as shown in Figure 19 (L).

Remark 7.17. The strange numbering of the rays in Figure 19 (L) comes from its

relation to the Triangle VGIT (see §9.2.4 for more details)

By Remark 3.15, the secondary fan, shown in Figure 19 (R) with the chambers

labelled, is the fan with support L∨R and with rays generated by the columns of

Q̂ ∶ (Z5)∨ → L∨ where:

Q̂ =
⎛
⎝

1 0 −1 −1 1

−1 1 1 −1 0

⎞
⎠

Moreover, by Remark 3.36, the stacky secondary fan just has β (see §3.4) equal to

Q̂. Then standard toric geometry (see [14], §11.1) tells us that F is the (weighted

orbifold) blow-up of P2 (with coordinates [a3, a6, a5] where the numbering here

corresponds to the numbering on the rays in Figure 19 (L)) at the basepoints of

the pencil of conics given by α2
1a3a6 = α2a

2
5, which (set-theoretically) are the two

torus fixed points [1,0,0] and [0,1,0]. As such, F is a conic bundle over P(1,2)
(with coordinates [α1, α2]).

The discriminant for the Pentagon VGIT has two non-toric components, one

(call it ∇P ) corresponding to the left hand edge of P and the other (the principal

component ∇pr) corresponding to P itself. Finally, there are four toric divisors

corresponding to the four vertices of P . The secondary polytope with the toric

components of the discriminant indicated by dashed lines is shown in Figure 26

(ignore the phases in this figure). One checks that ∇P is the discriminant of a

quadratic polynomial in one variable and so ∇P = {a2
5 = 4a3a6}. As such, ∇P is

the conic fibre over [α1, α2] = [2,1] and intersects only Z(W3) and Z(W5), doing
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so in each case transversely at a single point. One also checks that ∇pr meets

each of Z(Wi) (for i = 1,2,4) transversely at one point. Therefore there are only

large radius paths in the Pentagon and so we will only need to use the large radius

representation ρW from Proposition 5.20.

Remark 7.18. The Pentagon VGIT occurs as a slice of the universal unfolding of

the A2 surface singularity in [18] (see also [8]). There Donovan and Segal observe

that the universal unfolding is described by another VGIT whose FIPS is a double

cover of the FIPS of the Pentagon. In fact, the fundamental group of the Pentagon

FIPS is intimately related to the “mixed” braid group B1,2 ⊂ B3 (see [18], §4.4).

Similarly, the fundamental group of the FIPS of the universal unfolding is related

to the “pure” braid group PB3 ⊂ B3 and this double cover corresponds to the fact

that B1,2 is an extension of Z2 by PB3.

Now the VGIT describing the universal unfolding is quasi-symmetric and its

FIPS, by Theorem 8.8, is a hyperplane complement. Since, by Corollary 2.8, the

fundamental group of this FIPS acts, they are able to prove Conjecture A for this

non-quasi-symmetric example. We shall discuss this approach more in §9.3 but the

main drawback to generalising it is that it is difficult to determine when such nice

covers exist (though see Remark 7.29 for an idea in this direction).

7.3.1. Topology using Zariski–van-Kampen. Our aim in the rest of this section (see

Theorem 7.27) is to reconstruct Donovan and Segal’s fundamental groupoid action

(see [18]) directly – that is, forgetting about the nice double cover in Remark 7.18

– following the strategy outlined at the start of this chapter.

We start by using the Zariski–van-Kampen theorem to find a presentation for

the fundamental groupoid. We begin with the pencil which presents F as a conic

bundle f̂ ∶ F→ P(1,2) as described above. Pick coordinates X,Y on the toric open

subset of F near pC3 such that {X = 0} = Z(W1) and {Y = 0} = Z(W2). Then

one checks, by Horn uniformisation (see (4) in §3.6), that ∇pr = {X + Y = 1} and

f(X,Y ) = XY ∈ Cα (where α ∶= α2/α2
1). We have also seen that ∇P = {XY = 1/4}

is the fibre of f over α = 1/4.

We now check that the conditions in the Zariski–van-Kampen Theorem (The-

orem 7.3) hold for the morphism f = f̂ ∣FIPS ∶ FIPS ↠ C ⊂ P(1,2). Here C ∶=
Im(f) = P(1,2)/{α = 0,1/4} since the torus-invariant fibre over α2 = 0 (but not the

torus-invariant fibre over α1 = 0) is part of the discriminant.

(1) The fibre Fα = {XY = α}/{X + Y = 1} is generically ≅ C∗ /{2 points} and

one checks that there are two critical fibres, one over α = 1/4 (which is

not in FIPS anyway) and one over α1 = 0. As such, Z = {α1 = 0} and so

B = C/{α1 = 0}.

(2) The fibre over α1 = 0 is ≅ C∗ /{1 point} and so is irreducible.

(3) We pick two basepoints b1, b2 ∈ B with α-coordinate ∈ R>0 respectively less

than/greater than 1/4. We also pick free generators ζi of π1(B,{b1, b2}) as

shown in blue at the bottom of Figure 20 (in terms of α).
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(4) By Remark 7.1, we need to pick disjoint lifts of ζi for i = 1,2,3. We shall

choose two such lifts s1 and s2 lying in {Y = ε} and {X = ε} respectively

for ε ∈ R>0 sufficiently large. As usual, pij ∶= sj(bi) for j = 1,2 denotes the

two basepoints in Fbi .

We note that neither of our sections extends over α1 = 0. This is because they

lie in {X = ε} and {Y = ε} and these curves limit to the torus fixed point pC4 and

pC5 respectively, which have been deleted. As such, Remark 7.5 does not apply.

Nonetheless the meridians of f−1(α1 = 0) in the FIPS are easy to describe – in fact,

we can just take γ′z = α
(−1,−1)
Ci

for i = 4 or 5. So the Zariski–van-Kampen theorem

(Theorem 7.3) gives us:

Corollary 7.19. π1(FIPS,{pij}) is generated by:

π1(Fb1 ,{p11, p12}), π1(Fb2 ,{p21, p22}) and sj(ζi) for i = 1,2,3, j = 1,2

subject to α
(−1,−1)
Ci

= e for i = 4,5 and the monodromy relations for ζi (i = 1,2,3).

We now want to understand this presentation in terms of imposing additional

relations on π1(U) where U ⊂ FIPS is a specific collection of near large radius

regions in the FIPS glued together. Recall that the reason we want to do this is

that we know from §5.4 how to define a representation on π1(U) since there are

only large radius paths in U .

So how should we pick U so that it can be compared easily with the presentation

in Corollary 7.19? For this, we note that the choices made for the Zariski–van-

Kampen Theorem give some natural choices of near large radius regions. Our

choice of pencil means that the fibre Fb1 is a (−1,1)-orbit and so Fb1 contains the

push-off of Z(W1) and Z(W2) in the near large radius regions corresponding to

βW1 = βW2 = (−1,1). Our choice of sections means that sj lives in an orbit of the

1-PS corresponding to (1,0) and (0,1) respectively for j = 1,2. Therefore Im(s1)
lives in the push-off of Z(W5) defined by βW5 = (1,0). Similarly Im(s2) lives in the

push-off of Z(W3) defined by βW3 = (0,1). We therefore relabel sj(ζ2) = γ−1
Cj+3,Cj

and sj(ζ1) = γ−1
Cj ,Cj+3

in the notation from §5 to specify ρW on these paths.

Remark 7.20. Note however that we don’t get a natural choice of near large radius

region near Z(W4) from the Zariski–van-Kampen presentation. The natural guess

would be the subset {∣XY ∣ ≥ b2} with fibre Fb2 . This would correspond to choosing

βW4 = (−1,1). However, this is not a near large radius region near Z(W4) because

⟨λC4,C5 , (−1,1)⟩ ≠ ±1. Geometrically, this corresponds to the fact that the conic

fibration f has a non-reduced fibre supported on Z(W4). Therefore instead we have

to use a different fibration to push γkC4,C5
off Z(W4).

These choices of βWi
(for βW4

we choose (0,1)) lead us to pick the following

regions in the FIPS:

U1 ∶= {∣XY ∣ ≤ b1}, U2 ∶= {∣Y ∣ ≥ ε, ∣XY ∣ ≤ b2}

U3 ∶= {∣X ∣ ≥ ε, ∣XY ∣ ≤ b2}, U4 ∶= {∣X ∣ ≥ ε, ∣XY ∣ ≥ b2}
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and U5 = VC4 is a large radius region (see §5.1) containing p21. The images ∆i of

the five subsets Ui under the moment map µ ∶ F↠∆ ∶= Im(µ) are shown in Figure

22 (L). Gluing these regions together, we define U ∶= ⋃i=1,2,3,4,5Ui.

Remark 7.21. Note that Ui for i = 2,3,4 are actual near large radius regions of the

form VW . On the other hand, U1 is a neighbourhood of both curves Z(W1) and

Z(W2) and so not of this form. Instead it’s regions of the form VW1 , VW2 glued

together near VC3 . This is because the pencil f breaks into multiple boundary

curves as α → 0. Then “large radius paths” in U1 will correspond to a pair of large

radius paths in VW1 and VW2 respectively. The reason we keep U1 in one piece

despite this extra complication is so that (by our choice of βW1 and βW2) we have

U1 = f−1(D) where D is the punctured disk in C bounded by ζ3 and f is our pencil.

This will mean that the monodromy is easy to analyse in terms of U1.

Remark 7.22. Here we take U4 to be the near large radius region defined by βW4 =
(0,1), so that the push-off γkC4,C5

is a path in the fibre F = {X = ε} (between a new

basepoint p′ say and p22) and not the fibre Fb2 . As in Remark 5.16, the canonical

path in U5 between p′ and p21 allows us to identify π1(U,{pij , p′}) ≅ π1(U,{pij})
and one checks explicitly that the paths γkC4,C5

get identified with the paths of the

same name in Fb2 shown in Figure 20.

Since Z(W4) is not in the discriminant and hence is in U4, α
(−1,−1)
Ci

= e for

i = 4,5 and hence π1(U4,{p′, p22}) ≅ π1(F,{p′, p22}). Changing basepoints from p′

to p21, we therefore see that π1(U4∪U5,{p21, p22}) is the subgroupoid of π1({∣XY ∣ ≥
b2},{p21, p22}) generated by the paths γkC4,C5

in Fb2 and the loops α
(0,1)
Ci

for i = 4,5.

We now pick presentations (as in Remark 5.15) of π1(Fbi ,{pi1, pi2}) as free

groupoids on the generators shown in blue in Figure 20, where we have drawn

our fibres by projecting onto the X-coordinate. We have chosen these particular

generators on the different fibres to make the monodromy relations as simple as

possible.

Remark 7.23. We use the notation for large radius paths in Ui for i = 2,3,4 from

§5 so that ρWi is then automatically specified. Recall from Remark 7.21 however

that U1 is not a single near large radius region but a union of two such regions and

so the generators γ
0/j
C1,C2

in Fb1 correspond to a large radius path γ0
C1,C3

in VW1

followed by a large radius path γjC3,C2
in VW2 . As such, this notation specifies the

representation on these paths – namely, it’s the sequence of window equivalences

φC3,C2

j ○ φC1,C3

0 . It should not be confused with γ0,j
C1,C2

from §6 which specifies a

(single) fractional window equivalence.

Another way of thinking about the representation on these paths is to introduce

another basepoint near the torus fixed point pC3 . Then the actual large radius

paths γ0
C1,C3

and γjC3,C2
are paths in the fundamental groupoid with this extra

basepoint and we know how to define the representation. Whilst this approach is
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Figure 20. Generators for π1(Fbi ,{pi1, pi2}) and π1(B,{b1, b2})
for the Pentagon VGIT

natural from the large radius point of view in U1, we do not pursue it here because

it doesn’t play so well with the presentation coming from the pencil. To use this

presentation, we would need to extend this extra basepoint to a section of f . But

the pencil doesn’t split into multiple curves as α →∞ and so this extra basepoint

isn’t natural from the large radius point of view near Z(W4).

Remark 7.24. Our choices of section mean that s1(ζ3) agrees with the toric loop

α
(−1,0)
C1

and s2(ζ3) with α
(0,−1)
C2

. To be in line with the notation from previous

sections, we relabel s1(ζ3) by α
(−1,0)
C1

and s2(ζ3) by α
(0,−1)
C2

.

Our choice of projection means that (for i = 1,2) pi2 appear fixed under mon-

odromy whilst pi1 (whose X-coordinate is α/ε) moves. In particular, around ζ3,

p11 does the non-trivial loop shown in Figure 21 (R). However, along ζ1 and ζ2, pi1

traces out a trivial loop so we draw it as fixed. Together with the fact that the two

points of the fibre over α in the discriminant have X-coordinates 1/2 ±
√

1/4 − α,

this explains the monodromy shown in Figure 21.

Now we repackage the presentation in Corollary 7.19 in terms of π1(U) and see

what’s left over. Since the near large radius region U1 can be described in terms

of Fb1 , α
(−1,0)
C1

,α
(0,−1)
C2

and monodromy along ζ3 (see Remark 7.21), it turns out

that the additional relations only come from monodromy along ζ1 and ζ2. More

precisely, we get:
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ζ1 ζ2 ζ3

∣X ∣

Arg(X)

Figure 21. Monodromy around the 3 paths ζ1, ζ2 and ζ3 for the
Pentagon VGIT

∆1

∆2

∆3
∆4

∆5

C5 C2

C4 C1

αβ
C5

αβ
C2

γ0
C2,C5

γ−1
C2,C5

αβ
C4

γ0
C4,C5

γ−1
C4,C5

γ0
C4,C1

γ−1
C4,C1

αβ
C1

γ
0/0
C1,C2

γ
0/−1
C1,C2

Figure 22. Image of near large radius regions under the moment
map (L) and generators for π1(U) in the Pentagon VGIT (R)

Proposition 7.25. π1(FIPS,{pij}) is generated by π1(U,{pij}) plus the 4 rela-

tions:

(1) γ−1
C4,C5

= γ−1
C2,C5

○ γ0/−1
C1,C2

○ γ0
C4,C1

(2) γ0
C4,C5

= γ−1
C2,C5

○ γ0/0
C1,C2

○ γ0
C4,C1

(3) γ0
C4,C5

= γ0
C2,C5

○ γ0/0
C1,C2

○ γ−1
C4,C1

(4) γ−1
C4,C5

= γ0
C2,C5

○ γ−1/0
C1,C2

○ γ−1
C4,C1

where γ
−1/0
C1,C2

is the path in Fb1 given by γ
0/0
C1,C2

(γ0/−1
C1,C2

)−1α
(−1,1)
C2

γ
0/0
C1,C2

(α(−1,1)
C1

)−1.

Remark 7.26. It will follow from the proof that π1(U,{pij}) is generated by the

paths in Figure 22 (R), where γ0
C4,C1

∶= (γ−1
C1,C4

)−1 and γ0
C2,C5

∶= .(γ−1
C5,C2

)−1.

Proof. Now we package this presentation into pieces we understand and see what’s

left over. Note that, by Remark 7.21 and the Zariski–van-Kampen theorem applied

to U1, π1(Fb1 ,{p11, p12}) and sj(ζ3) (for j = 1 and 2) together with the monodromy

relations for ζ3 give a presentation of π1(U1,{p11, p12}).
Also, monodromy of α

(−1,1)
C2

along ζ1 and ζ−1
2 gives exactly monodromy invari-

ance of γkC2,C5
near the large radius curve Z(W3). Therefore the subgroupoid of

π1(FIPS,{p11, p12, p22}) generated by π1(Fb1 ,{p11, p12}), sj(ζ3) (for j = 1 and 2),

α
(−1,1)
Ci

(for i = 2,5) and γkC2,C5
gives a presentation of π1(U1 ∪U3,{p11, p12, p22}).

In exactly the same way, using monodromy of α
(−1,1)
C1

along ζ1 and ζ−1
2 , we get

that the subgroupoid of π1(FIPS,{pij}) generated by π1(Fb1 ,{p11, p12}), sj(ζ3)
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(for j = 1 and 2), α
(−1,1)
Ci

(for i = 1,2,4,5), γkC2,C5
and γkC1,C4

gives a presentation of

π1(U1 ∪U2 ∪U3,{pij}).
By Remark 7.22, if we add in the two remaining free generators γkC4,C5

in

π1(Fb2 ,{p21, p22}) and the relation α
(−1,−1)
Ci

= e for i = 4,5, we get a copy of

π1(U,{pij}).
Comparing with our presentation of π1(FIPS,{pij}), we see that the only re-

lations left to implement are the monodromy of γ
0/k
C1,C2

along ζ1 and ζ−1
2 . Using

Figure 21, we see that:

● mζ1(γ
0/k
C1,C2

) = γkC4,C5
and so we get the relations γ−1

C2,C5
○γ0/k
C1,C2

○(γ−1
C1,C4

)−1 =
γkC4,C5

● mζ2(γ0
C4,C5

) = γ0/0
C1,C2

and so we get the relation (γ0
C2,C5

)−1○γ0
C4,C5

○γ0
C1,C4

=
γ

0/0
C1,C2

● mζ2(γ−1
C4,C5

) = γ−1/0
C1,C2

and so we get the relation (γ0
C2,C5

)−1○γ−1
C4,C5

○γ0
C1,C4

=
γ
−1/0
C1,C2

.

Therefore it follows that π1(FIPS,{pij}) is the quotient of π1(U,{pij}) by the

four relations stated. �

7.3.2. Fundamental groupoid representation. By Remark 7.23, our notation speci-

fies how we are choosing the large radius representation ρW from Proposition 5.20

in each region VW near a curve in the toric boundary. By Remark 5.24, these glue

together (across U5 also) to give a representation ρ of π1(U). In this section, we

prove:

Theorem 7.27. π1(FIPS,{pij}) acts on the phases of the Pentagon VGIT so that

it recovers the large radius representation ρW on each wall.

Remark 7.28. This example shows that, while the structure of magic windows in

the quasi-symmetric setting of §8 may be particularly nice, magic windows are

sufficient to construct our fundamental group(oid) action in non-quasi-symmetric

examples too.

Proof. By Proposition 7.25, we have an equivalence

π1(FIPS,{pij}) ≅ π1(U)/⟨(1), (2), (3), (4)⟩

Since ρ is naturally a representation on π1(U), we only need to prove that there

are 4 magic windows which implement these 4 additional relations.

One checks that the following 4 collections of 3 line bundles are magic win-

dows whose parameters wλ (see Definition 4.30) agree with those appearing in the

relations (1) to (4) respectively:

O,O(−1,0),O(0,−1)

O,O(0,−1),O(1,−1)

O,O(1,0),O(1,−1)

O,O(1,0),O(0,1)
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Remark 7.29. These 4 magic windows are the only ones which give relations be-

tween window equivalences with weights 0 or −1 – that is, between equivalences

corresponding to large radius generators from the presentation in Theorem 7.27.

In fact, in this example, every magic window is of this form up to tensoring with a

line bundle.

The set of all magic windows is naturally indexed by the chambers of the affine

hyperplane arrangement A = {X ∈ Z} ∪ {Y ∈ Z} ∪ {X + Y ∈ Z}. For a quasi-

symmetric representation, there is a corresponding affine hyperplane arrangement

(see Proposition 8.14) whose chambers also naturally index the magic windows. In

this case A is the hyperplane arrangement associated to the quasi-symmetric VGIT

with weights:

Z6 ↠ L∨ = Z2,Q =
⎛
⎝

1 −1 0 0 1 −1

0 0 1 −1 −1 1

⎞
⎠

and this is exactly the “unsliced” VGIT whose slice is the Pentagon VGIT and

which induces the covering map in [18]. More generally, one might hope that

in other non-quasi-symmetric examples the combinatorics of the set of all magic

windows might help to identify such an “unsliced” VGIT whose slice is the original

VGIT.

8. The quasi-symmetric case

Definition 8.1. A representation TL ⟳ Cn is quasi-symmetric if, for each line `

in L∨R, the sum of all the weights that lie on ` is zero.

Remark 8.2. In particular self-dual representations of TL – that is, if β ∈ L∨ is

a weight, then so is −β – are quasi-symmetric. A simple example of a quasi-

symmetric representation which is not self-dual is given by L = Z → Z3,1 ↦
(1,−2,1). This corresponds to the toric VGIT which describes the (orbifold) flop

between Tot(OP1(−2)) and [C2 /Z2] where Z2 acts via (−1,−1).
We note that quasi-symmetric representations are necessarily Calabi–Yau. Con-

versely, any Calabi–Yau representation with Rk(L) = 1 is automatically quasi-

symmetric.

Given that the general story of magic windows in the quasi-symmetric setting

is worked out in [24], in this section we complete this circle of ideas by proving, in

Theorem 8.8, that the (log-)discriminant locus is a hyperplane arrangement and,

in Proposition 8.14, that it agrees with the combinatorial model used to construct

the large radius representation in [24].

The proof of Theorem 8.8 is based on the following observation:

Lemma 8.3. The representation TL ⟳ Cn is quasi-symmetric if and only if ∇pr
is a point.
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Proof. Since the image of Horn uniformisation is ∇pr ([20], Ch. 9, Theorem 3.3a),

∇pr is a point if and only if its Horn uniformisation (see (4) in §3.6) is constant. Ex-

plicitly, this happens precisely when, for all i, ∏n
j=1(λ1βj1+⋯+λkβjk)βji is constant

as a degree 0 element of C(λ1,⋯, λk). Since ∑km=1 λmβjm agrees with ∑km=1 λmβJm

(up to scaling) if and only if βj and βJ lie on the same line in L∨R, decomposing

∏n
j=1(λ1βj1+⋯+λkβjk)βji into lines as ∏`⊂L∨R

(∏j∣βj∈`(∑
k
m=1 λmβjm)βji) shows that

this is constant if and only if each factor ∏j∣βj∈`(∑
k
m=1 λmβjm)βji is constant for

all i and all lines `. Fix a primitive generator ` = (l1,⋯, lk) for ` and write each βj

on ` as nj` for nj ∈ Z. Then

∏
j∣βj∈`

(
k

∑
m=1

λmβjm)βji = ( ∏
j∣βj∈`

n
βji
j )(

k

∑
m=1

λmlm)∑j∣βj∈` βji

is constant if and only if ∑j∣βj∈` βji = 0. Hence the result. �

Remark 8.4. The proof shows that, in the quasi-symmetric case, ∇pr has i-th co-

ordinate ∏n
j=1 n

βji
j .

8.1. Hyperplanes associated to circuits. If Γ is a circuit (see Definition 3.31),

TL∨
Γ

is a rank 1 torus, where we recall that L∨Γ contains the weights for the VGIT

on Γ (see §3.5). Moreover, as a face which is a circuit is necessarily minimal (see

Definition 3.3), ∇A∩Γ ⊂ TL∨
Γ

is a point. If we pick a generator lΓ ∈ LΓ, then this

gives a coordinate x on TL∨
Γ

and also allows us to identify L∨Γ ≅ Z via ⟨−, lΓ⟩. Then

Horn uniformisation tells us that ∇A∩Γ = {x = cΓ} ⊂ TL∨
Γ

where cΓ =∏n
j=1m

mj
j and

mj = ⟨βj , lΓ⟩ ∈ Z.

Remark 8.5. Note that m
mj
j is positive precisely when mj ≥ 0 or mj is even. So cΓ

is positive precisely when it contains an even number of negative odd terms – that

is, ∑mj<0mj ∈ 2Z. In the notation of §4, this is the same as η lΓ being even.

When we pull ∇A∩Γ back to TL∨ under the map induced by p ∶ L∨ ↠ L∨Γ (see

§3.5), it becomes the divisor ∇Γ ∶= {xlΓ = cΓ}.

Remark 8.6. Since the universal cover L∨C → TL∨ is given in coordinates by taking

the logarithm, we prefix the pullback under this cover of any object defined on TL∨

by log. For example, the log-discriminant locus is the union of {Log(∆A∩Γ) = 0}
over all faces Γ ⊂ ∆, where Log ∶= log

2πi
. As Log is multivalued, {Log(∆A∩Γ) = 0}

consists of translates under L∨ of {Logbr(∆A∩Γ) = 0}, where Logbr is the single-

valued version of Log with arguments lying in [0,2π). Note that ∆A∩Γ extends to a

section of a line bundle on F (see §3.4) and so, when we take logs, we are implicitly

restricting this function to TL∨ . In particular, if Γ is a vertex of ∆, ∆A∩Γ is a toric

coordinate on TL∨ and the corresponding component of the log-discriminant locus

is empty.

With this terminology, ∇Γ is a log-hyperplane – if we pick a basis of L (and

write lΓ = (l1, . . . , lk) in this basis) and corresponding coordinates xi on TL∨ , then

xlΓ = ∏i x
li
i and HΓ ∶= Log(∇Γ) = {(Log(x) ∈ Ck ∣ ∑i liLog(xi) ∈ Log(cΓ) + Z} is
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a free Z-orbit of complex affine hyperplanes. The upshot to this discussion is that

faces Γ which are circuits give rise to log-hyperplanes in the discriminant locus.

Remark 8.7. If the original VGIT is quasi-symmetric and we write βj = nj` where

(as in the proof of Lemma 8.3) ` denotes a choice of primitive generator of the line

` = ⟨βj⟩ ⊂ L∨R we can compute:

(5)

cΓ = ∏
`⊂L∨R

∏
j∣βj∈`

(nj⟨lΓ, `⟩)⟨lΓ,βj⟩ = ∏
`⊂L∨R

( ∏
j∣βj∈`

n
⟨lΓ,βj⟩
j )⟨lΓ, `⟩∑j∣βj∈`⟨lΓ,βj⟩ =

n

∏
j=1

n
⟨lΓ,βj⟩
j

where, for the third equality, we used that quasi-symmetry implies ∑j∣βj∈` βj = 0.

If the original representation is actually self-dual (see Remark 8.2), we may pick

half of the weights, which we index βi, such that all the weights are of the form

±βi. Then the terms in cΓ corresponding to ±βi cancel up to a sign and we get

that cΓ = ±1 where the sign can be worked out using Remark 8.5. This means that

I(Log(cΓ)) = 0 and hence HΓ is the complexification of a real hyperplane. This is

not true for general quasi-symmetric representations.

8.2. The discriminant in the quasi-symmetric case. In this section, we prove

that, in the quasi-symmetric case, all components of the discriminant locus come

from circuits.

Theorem 8.8. The log-discriminant locus of a quasi-symmetric TL-representation

is an (affine) hyperplane arrangement. In this case, the hyperplanes are the HΓ

arising from the faces Γ ⊂ ∆ which are circuits as in §8.1.

Remark 8.9. By Remark 8.6, the log-discriminant locus doesn’t contain toric com-

ponents corresponding to vertices of ∆ and so this theorem doesn’t tell us anything

about such components. In general in the quasi-symmetric case it is possible that

the FIPS contains some toric divisors. In fact, the orbifold flop in Remark 8.2

gives such an example as the FIPS has a Z2-orbifold point corresponding to the

phase [C2 /Z2]. However, using the description from §5.1 of when a toric divisor

is part of the discriminant, we can see that the FIPS of a quasi-symmetric VGIT

only contains a toric divisor if there is a line and a complementary hyperplane in

L∨R such that any weight lies on one of these two subspaces. As such, typically the

whole toric boundary of F is in the discriminant and so the FIPS is actually equal

to log-hyperplane complement in TL∨ from the theorem.

Remark 8.10. By Remarks 8.4 and 8.7, cΓ =∏j n
⟨lΓ,βj⟩
j agrees with the xlΓ -coordinate

of ∇pr in the quasi-symmetric case. Hence, ∇pr ⊂ ∇Γ for all circuits Γ. By Theorem

8.8, this says that, in the quasi-symmetric case, ∇pr is contained in all non-toric

components of the discriminant locus (c.f. Remark 3.10).

Lemma 8.11. If the representation TL⟳ Cn is quasi-symmetric and Γ ⊂ ∆ is a

face, then the induced representation TLΓ
⟳ CnΓ is quasi-symmetric also.
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Proof. Recall from (3) in §3.5 that the induced representation has weights p(βi)
for all i such that ωi ∈ Γ, where p ∶ L∨ ↠ L∨Γ is the quotient map. Then it follows

from (3) that all the other weights lie in kerp ∶= (L′Γ)∨. As every lift ˆ̀ ⊂ L∨R of a

line ` ⊂ (L∨Γ)R is not contained in (L′Γ)∨R, then the quasi-symmetry condition for all

lifts ˆ̀ implies the quasi-symmetry condition for `.

�

Proof of Theorem 8.8. By §8.1, we only need to show that if Γ is not a circuit,

then ∆A∩Γ doesn’t contribute to EA. Since (non-vertex) redundant faces don’t

contribute to EA, the space LΓ of relations in such a Γ must have Rk(LΓ) >
1. By Lemma 8.11, as the TL-representation is quasi-symmetric so is the TLΓ

-

representation. Then Lemma 8.3 tells us that ∇A∩Γ is a point and so ∇Γ ∶=
p∗(∇A∩Γ) has codimension at least 2. As such, ∆A∩Γ doesn’t contribute to EA. �

More generally, we note:

Lemma 8.12. If the log-discriminant locus is a hyperplane arrangement, the hy-

perplanes are the HΓ coming from faces Γ which are circuits, as in §8.1.

Proof. Suppose that all the components ∇Γ of the discriminant are log-hyperplanes.

Since ∇Γ = p∗(∇A∩Γ), this implies that ∇A∩Γ is a log-hyperplane.

As such, we need only prove that if ∇pr is a log-hyperplane, then Rk(L∨) = 1,

since it then follows that the TL-representation has no zero weights and so is a

circuit. To see the claim, note that the logarithmic Gauss map (see §3.6) of a log-

hyperplane is the constant function. Then Theorem 3.51 implies that ∇pr can only

be a log-hyperplane if Rk(L∨) = 1. �

Remark 8.13. This result implies that the secondary fan of a VGIT whose log-

discriminant is a hyperplane arrangement is itself a hyperplane arrangement. In

fact, we expect that such a VGIT is quasi-symmetric. It certainly follows from

Lemma 8.12 that, if Rk(L) > 1, ∇pr is not part of the discriminant locus and so

must be codimension at least 2. At least in 2-dimensions, this proves the claim as

then ∇pr is a point and we are done by Lemma 8.3.

8.3. Explicit description of the hyperplane arrangement. We conclude by

showing that our log-discriminant hyperplane arrangement in L∨C agrees with the

one constructed by Halpern-Leistner–Sam in [24], Ch. 3. From Theorem 8.8, we

know that our discriminant hyperplane arrangement, denoted Hdisc, comes from

faces Γ ⊂ ∆ which are circuits. From §8.1, a circuit has a unique (up to sign) choice

of generating relation lΓ ∈ LΓ and our hyperplanes are HΓ,n ∶= {y ∈ L∨C ∣ ⟨lΓ, y⟩ =
Logbr(cΓ) + n} where n ∈ Z and cΓ is defined by (5) from §8.1. Note that the real

hyperplane HlΓ defined by lΓ is the hyperplane (L′Γ)∨R spanned by complementary

weights from §3.5 and so HΓ,n is a translate of (L′Γ)∨C in L∨C.
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In order to define their hyperplane arrangement, Halpern-Leistner–Sam intro-

duce two polytopes in L∨R associated to a TL-representation:

Σ̄ ∶= {∑
j

ajβj ∣ aj ∈ [−1,0]} =∶∑
j

[−βj ,0]

∇̄ ∶= {β ∈ L∨R ∣ −ηl
2
≤ ⟨l, β⟩ ≤ ηl

2
for all l ∈ L}

where ηl ∶= max{⟨l, µ⟩ ∣ µ ∈ Σ̄}. Moreover they show (see [24], Lemma 2.8) that for

quasi-symmetric torus representations ∇̄ = 1
2
Σ̄. They then define a real hyperplane

arrangement in L∨R as the L∨-orbit (acting by translations) of the supporting affine

hyperplanes HF of the facets F of ∇̄. Their hyperplane arrangement, which we

denote HHLS, is then the complexification of this real hyperplane arrangement.

Note that, as the weights span L∨, Σ̄ and ∇̄ are full-dimensional and so there

is a unique supporting hyperplane HF for each facet F . Therefore if we write

HF = {y ∈ L∨R ∣ ⟨lF , y⟩ = cF }, then the hyperplanes in HHLS have the form HF,n ∶=
{y ∈ L∨C ∣ ⟨lF , y⟩ = cF + n}.

These two hyperplane arrangements, Hdisc and HHLS, cannot be precisely the

same since Logbr(cΓ) can have non-zero imaginary part (though not in the self-dual

case – see Remark 8.7) and hence HΓ,n cannot in general be the complexification

of a real hyperplane in L∨R. However we do have:

Proposition 8.14. For a quasi-symmetric TL-representation, Hdisc = HHLS after

translating the latter by − i
2π ∑j log(∣βj ∣)βj ∈ iL∨R where ∣β∣ is the lattice length of β.

Proof. We start by determining the facets of ∇̄ using its description both in terms

of inequalities and as a convex hull. By adding up all the weights on a ray inside a

given line, we can assume that, for the purpose of determining the facets, on any

line with weights our representation only has weights ±βj .
We first describe when β ∈ ∂∇̄. As above, since our representation is quasi-

symmetric, we have ∇̄ = 1
2
Σ̄. Hence we observe that β ∈ ∂∇̄ precisely when β =

∑j ajβj with aj ∈ [−1/2,1/2] and there is an l ∈ L such that one of inequalities in the

definition of ∇̄ is saturated i.e. ⟨l, β⟩ = ±ηl
2

. Since ∇̄ = 1
2
Σ̄, ηl

2
= max{⟨l, µ⟩ ∣ µ ∈ ∇̄}

and, as ∇̄ = −∇̄, −ηl
2
= min{⟨l, µ⟩ ∣ µ ∈ ∇̄}. Write ⟨l, β⟩ = ∑j aj⟨l, βj⟩ and, swapping

βj for −βj if necessary, suppose that ⟨l, βj⟩ ≥ 0 for all j. Then we get an equality

⟨l, β⟩ = ±ηl
2

by making the coefficient aj of βj such that ⟨l, βj⟩ > 0 as large/small as

possible. So β ∈ ∂∇̄ precisely when it’s of the form ∑j∣⟨l,βj⟩>0 ±βj/2+∑j∣⟨l,βj⟩=0 ajβj .

So we get a pair of facets F± of ∇̄, going through ∑j∣⟨l,βj⟩>0 ±βj/2 respectively,

precisely when the set of weights in the real hyperplane Hl = {⟨l,−⟩ = 0} ⊂ L∨R span

the whole hyperplane. Hence the supporting hyperplanes of the facets F± are HF± =
{⟨l,−⟩ = ⟨l,∑j∣⟨l,βj⟩>0 ±βj/2⟩} whenever l satisfies this property. So for such an l, we

can take lF± ∶= l and cF± ∶= ⟨l,∑j∣⟨l,βj⟩>0 ±βj/2⟩. Note that, as ∑j∣⟨l,βj⟩>0 ±βj/2 differ

by an element of L∨, HF+,m = HF−,m+n for some n ∈ Z, so we need only consider

the hyperplanes corresponding to one of these faces. By convention, we choose to

work with F+.



87

We now show that there is a face Γ (which is necessarily a circuit) such that the

real hyperplanes HlF and HlΓ in L∨R are equal. Since the representation is quasi-

symmetric, we have that ∑j∣βj∈HlF βj = 0 and hence we have a positive relation

between all the weights on HlF . Since HlF is spanned by the weights lying on it,

Lemma 3.47 guarantees that there is a (minimal) face Γ such that HlF = (L′Γ)∨R.

Calling lΓ the defining equation of (L′Γ)∨R, HlF =HlΓ as claimed.

For this Γ, we now claim that the real hyperplanes R(HF,0) = {y ∈ L∨R ∣ ⟨lF , y⟩ =
cF } and R(HΓ,n) = {y ∈ L∨R ∣ ⟨lΓ, y⟩ = R(Logbr(cΓ)) + n} are the same for some

n ∈ Z. Hence R(HF,m) = R(HΓ,m+n) and so HHLS and Hdisc determine the same

real hyperplane arrangements. To see the claim, recall that cF = ⟨l,∑j∣⟨l,βj⟩>0 βj/2⟩
and hence is a half-integer. On the other hand, cΓ ∈ Q× so R(Logbr(cΓ)) is either

0 or 1/2 when cΓ is respectively positive or negative. Since HlF = HlΓ , it suffices

to prove that cΓ > 0 precisely when cF ∈ Z. By Remark 8.5, cΓ > 0 precisely when

⟨lΓ,∑j∣⟨lΓ,βj⟩<0 βj/2⟩ ∈ Z. By quasi-symmetry ∑j∣⟨lΓ,βj⟩<0 βj/2 = −∑j∣⟨lΓ,βj⟩>0 βj/2
and so this happens precisely when cF = ⟨lΓ,∑j∣⟨lΓ,βj⟩>0 βj/2⟩ ∈ Z.

The imaginary parts of our two hyperplane arrangements, I(HF,m) = {y ∈ L∨R ∣
⟨lF , y⟩ = 0} and I(HΓ,m+n) = {y ∈ L∨R ∣ ⟨lΓ, y⟩ = − 1

2π
log(∣cΓ∣)}, are different in

general. However, by (5) in §8.1

log(∣cΓ∣) = log(∏
j

∣nj ∣⟨lΓ,βj⟩) =∑
j

⟨lΓ, βj⟩ log(∣βj ∣) = ⟨lΓ,∑
j

log(∣βj ∣)βj⟩

So, if we set z ∶= − 1
2π ∑j log(∣βj ∣)βj , I(HF,m) + z = I(HΓ,m+n) and so HF,m + iz =

HΓ,m+n and we are done. �

9. The Triangle VGIT

9.1. Introduction. In this section, we discuss the Triangle VGIT which has a 3d

FIPS and is not quasi-symmetric. We shall construct the fundamental groupoid

representation from two different perspectives, one based on the Lefschetz strategy

(as discussed in §2.4.1) and the other based on the covering strategy (see §2.4.2).

The Triangle VGIT is given by the following toric data:

0→ L = Z3 Q∨
Ð→ Z6 AÐ→ N = Z3 → 0

where

Q∨ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

−1 −1 1

0 1 0

−1 1 −1

1 −1 −1

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,A =
⎛
⎜⎜⎜
⎝

2 1 0 1 0 0

0 1 2 0 1 0

1 1 1 1 1 1

⎞
⎟⎟⎟
⎠

As all the rays given by A lie in the affine hyperplane n3 = 1, this is a Calabi–Yau

VGIT. We note that ∆ is a triangle (hence the name of the VGIT) with all its sides

having lattice length 2. This choice of matrix A corresponds to the ordering of the
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ω6
ω4

ω1

ω2

ω3

ω5

ω6 ω4 ω1

ω2

ω3

ω5

∆

Figure 23. A hexagon degenerating to the triangle ∆ with rays labelled

F1

F6

F3

F8 F7

F9

F2

F4

F5

Figure 24. The secondary polytope of the Triangle VGIT

rays ωi in N indicated in the right of Figure 23. We label by ai the coordinate

function on C6 corresponding to ei ∈ Z6 and set βi ∶= Q(ei).

9.1.1. The phases. Phases of the Triangle VGIT correspond (see Remark 3.23) to

all the possible triangulations of (the whole of) ∆ with vertices at (some of) the

integral points of ∆.

There are 14 phases in this problem. One way to see this is to view ∆ as the

degeneration of a hexagon in which some pairs of consecutive edges “straighten”

to become edges of the triangle, as in Figure 23. This induces a bijection between

triangulations of ∆ as above and triangulations of the hexagon, which are counted

by the fifth Catalan number c5 = 14. The secondary polytope with all these 14

triangulations of ∆ is illustrated in Figure 24.

In terms of the geometry, the phase at the back of Figure 24 with the trivial

triangulation is the orbifold [C3 /G] where G = Z⊕2
2 embeds into (C∗)3 via the
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matrices:

(6) σ1 =
⎛
⎜⎜⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟
⎠
, σ2 =

⎛
⎜⎜⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎟
⎠
, σ3 =

⎛
⎜⎜⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟⎟⎟
⎠

We note that the three coordinate axes in C3 are the precisely the locus with

non-trivial isotropy, and that, away from the origin, these have isotropy group Z2,

corresponding to the 3 subgroups of G of order 2. At the origin, we get the full

isotropy group G. The underlying toric variety has non-isolated singularities and

can be described as the hypersurface singularity {xyz = u2} ⊂ C4
xyzu.

The phase for the opposite chamber (in the centre of Figure 24 with the symmet-

ric triangulation) has 3 compact curves which meet (at a unique point) as the axes

in C3 do. These are the maximal compact toric cycles. In fact (see [11], Example

5.31 for more details), this phase can be described as HilbG(C3).

Remark 9.1. Since the triangulations into integral (not just simplicial) triangles

all have 4 triangles, the geometric phases X of the VGIT have e(X) = 4 and so

K0(X)Q has rank 4. As such, any magic window in Db([C6 /TL]) should contain

precisely 4 line bundles.

9.1.2. The secondary stack. We observe that the above bijection between trian-

gulations of the hexagon and triangulations of the triangle can be extended to a

bijection between any polyhedral subdivisions (see Definition 3.24) of the hexagon

and triangle which respects the natural partial ordering of refinement. As such, we

get a (combinatorial) isomorphism between these two secondary polytopes. Since

(see [20], Ch. 7, Example 3.6) the secondary polytope of the hexagon is the 3-

dimensional associahedron, we see that the secondary polytope Σ(A) for the Tri-

angle VGIT is the associahedron shown in Figure 24. By Proposition 3.27, the 9

facets of the associahedron Σ(A) correspond to 9 polyhedral subdivisions of ∆ with

2 free markings – some of these are shown in Figure 4.

The secondary fan can therefore be described as the normal fan to Σ(A). Al-

ternatively, we can use the more concrete procedure in Remark 3.15 to construct

it directly from the original weights. Either way, we find that the rays of the sec-

ondary fan are generated by the columns of Q′ ∶ Z9 → Z3 (these are the original

weights βi for i = 1, . . . ,6 plus 3 new ones) where Q′ is:

Q′ =
⎛
⎜⎜⎜
⎝

1 −1 0 −1 1 0 1 1 −1

0 −1 1 1 −1 0 1 −1 1

0 1 0 −1 −1 1 −1 1 1

⎞
⎟⎟⎟
⎠
,A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 1 0 0 0 0 0

0 1 2 0 1 0 0 0 0

1 1 1 1 1 1 0 0 0

0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Remark 9.2. We note that the secondary fan has an S3-symmetry generated by

permuting the standard basis vectors in L∨ = Z3. This symmetry is induced by the
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S3-symmetry of ∆. There are 3 orbits of the facets of Σ(A) under this symmetry

and the 3 subdivisions in Figure 4 correspond to representatives.

To get the stacky secondary fan, we need to follow the procedure in §3.4. We

claim that the map β describing this structure is Q′. To see this, recall Example

3.35. The three subdivisions considered there correspond to the following 3 rays of

the secondary fan (in the above numbering):

ρ1 = R>0⟨(1,0,0)⟩ ∈ R3, ρ8 = R>0⟨(1,−1,1)⟩, ρ4 = R>0⟨(−1,1,−1)⟩

It follows from the definition of β in §3.4 β(e∨1) = β1 = Q′(e∨1), β(e∨8) = 2β1 +
β2 = Q′(e∨8) and β(e∨4) = β4 = Q′(e∨4). As observed in Remark 9.2, the remaining

elements β(e∨i ) ∈ L∨ are determined by the S3-symmetry of ∆ and so we see that

β = Q′. We note that therefore the stacky secondary fan still has the S3-symmetry

from Remark 9.2.

It follows that the secondary stack can be described as the quotient of the open

subset in (C9)∨ determined by the secondary fan (see §3.4) by (C∗)6 with weights

A′ ∶ Z9 → Z6. We set βi ∶= Q′(e∨i ) for i = 1, . . . ,9 (noting that this agrees with

our previous labels for the weights with i = 1,⋯,6) and label the facets of Σ(A)
corresponding to βi by Fi, as shown in Figure 24.

9.1.3. The FIPS. To understand the FIPS, we need to understand the discriminant.

It has 7 components in total corresponding to the 7 faces of ∆ given by ∆ itself

(this corresponds to the principal component ∇pr), the three edges of ∆ (this gives

three components ∇i) and the three vertices of ∆.

In the coordinates ai on C6, the vertex components correspond to the 3 toric

divisors a1 = 0, a3 = 0 and a6 = 0. This means that the FIPS lives inside

[C6 /⋃i=1,3,6{ai = 0}/(C∗)3], which can be identified with [C3 /Z⊕2
2 ] where the

“coordinates” on C3 are given by u = a2/
√
a1a3, v = a4/

√
a1a6 and w = a5/

√
a3a6

and G = Z⊕2
2 embeds into (C∗)3 exactly as in (6) in §9.1.1. As such, we have 3 lines

of Z2-orbifold points in the FIPS degenerating into a G-orbifold point at the one

remaining torus fixed point (corresponding to the origin).

Remark 9.3. This similarity between the orbifold phase of the Triangle VGIT (cor-

responding to a chamber C say) and the description of a small neighbourhood VC

in the FIPS of the torus fixed point pC (see §5.1) is partially coincidental.

By the discussion of the orbifold case at the end of §3.4, we know that the FIPS

of a VGIT with an orbifold phase [Cm /G] is an open subset (containing the origin

and all neighbouring divisors) of [Cn /G] (where n is the number of rays which are

not vertices of ∆) and the torus fixed point at the origin is pC . Hence, in this

setting, VC is always a deformation retract of [Cn /G]. So in the Triangle VGIT

the only coincidence is that m = n = 3. In general, this does not have to hold.

For example, in the case of Tot(KPn−1) flopping to [Cn /Zn], the FIPS is an open

subset inside [C /Zn].
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Now that we understand the ambient space, we turn to understanding the 4

remaining components of the discriminant. Following §3.1, we consider the family

CA of superpotentials given by W = z(a1x
2 + a2xy + a3y

2 + a4x + a5y + a6). Then

∇pr is given by the discriminant of W , namely those ai for which W has a critical

point in (C∗)3. This can therefore be described as:

det

⎛
⎜⎜⎜
⎝

a1 a2/2 a4/2
a2/2 a3 a5/2
a4/2 a5/2 a6

⎞
⎟⎟⎟
⎠
= 0

Similarly, ∇i is the discriminant of the quadratic polynomial in one variable corre-

sponding to restricting W to the edge opposite ω1, ω3 and ω6 for i = 1,2,3 respec-

tively. As such, ∇1 = {a3a6 = 4a2
5}, ∇2 = {a1a6 = 4a2

4} and ∇3 = {a1a3 = 4a2
2}. So the

FIPS is the complement of ∇pr ∪⋃3
i=1∇i inside [C3 /G]. In the coordinates u, v,w

above, this can be written as [C3 /{u2 = 4, v2 = 4,w2 = 4, u2 +v2 +w2 = uvw+4}/G].

Remark 9.4. One checks that ∇pr has a unique singular point inside [C3 /G], which

is a node at (u, v,w) = (2,2,2).

Remark 9.5. We can also think about the discriminant locus inside the secondary

stack F (see Definition 3.42). In this case, the discriminant comprises the toric

divisors ai = 0 for i = 1,3,6,7,8,9 as well as the 4 non-toric components above.

9.2. The Lefschetz strategy. Now that we understand the FIPS of the Triangle

VGIT, we turn to proving that its fundamental groupoid acts. Recall from §2.4.1

that our basic strategy is to reduce the problem to constructing representations

on the simpler VGITs which arise on the boundary of the secondary stack. We

have already met some of these in Figure 4. Then the reduced problem will be to

construct representations of π1(FIPS(Fi)), where Fi is the face of the secondary

polytope corresponding to βi ∈ L∨ (see Figure 24) and FIPS(Fi) is the complement

of the discriminant in the corresponding toric divisor D′
i ⊂ F (if this divisor is a

(toric) component of the discriminant, we don’t delete this component so FIPS(Fi)
is always non-empty).

Remark 9.6. Calling this complement FIPS(Fi) is an abuse of notation because

this space is not the FIPS of any Calabi–Yau VGIT in general. However, for the

faces Fi in the Triangle VGIT, FIPS(Fi) will actually either be the FIPS of such a

VGIT or a product of two such FIPS.

The crucial thing that allows us topologically to reduce to the boundary is that

we can find an ample (reducible) toric divisor D on F such that all its compo-

nents meet the non-toric part of the discriminant “transversely” (see the discussion

following Lemma 9.20). In particular, all the torus invariant curves Z(W ) in D

intersect exactly one component of the discriminant and do so transversely. In gen-

eral, to describe the topology of a neighbourhood of D in the FIPS we would have

to include additional near large radius paths, living in the push-offs (see §5.2) of
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the large radius curves Z(W ), as well as additional relations between these, living

in the push-offs (see Remark 5.17) of the large radius divisors D′
i which make up

D. Here transversality implies that these push-offs still look like Z(W ) and D′
i

respectively – that is, there is no distinction between large radius and near large

radius near these curves and divisors. As a result, it is enough to construct the

representation on all of the divisors D′
i contained in D and check that these glue

together over the curves Z(W ) where two such divisors meet.

Remark 9.7. Though the details in this section are specific to the Triangle VGIT,

we expect that, whenever we can find a divisor D as above, very similar arguments

would allow us to reduce constructing the representation of π1(FIPS) to construct-

ing representations of π1(FIPS(Fi)) where Fi label the facets corresponding to

components of D.

Remark 9.8. We note that there are curves Z(W ) in F which intersect more than

one component of the discriminant. In fact, for the particular ample divisor D we

will choose, any curve Z(W ) not in D has this property – this is one reason for

our choice of D in the first place. One can check that the curves not in D meet

two components of the discriminant – namely, ∇pr and one of the ∇i – each with

multiplicity one. So understanding the near large radius representation near these

walls would involve SODs.

We’ll now go over the strategy for proving this result. We’ll then fill in the

missing details in later sections.

(1) First we delete the locus Y = ⋃i=2,4,5D
′
i from the FIPS to get FIPSo ∶=

FIPS/Y . Noting that Y is the union of the toric divisors in the FIPS, we

see that the stacky locus of the FIPS is contained in Y . This locus causes

technical complications, both for the Lefschetz hyperplane theorem and

for the existence of some push-offs that we will need. By Proposition 7.2,

we know that π1(FIPS) is just the quotient of π1(FIPSo) by the meridians

around D′
i (for i = 2,4,5), which are precisely the toric loops αβi . Therefore,

to construct our representation ρ, it suffices to construct a representation

of π1(FIPSo) which acts trivially on αβi . Since the representation ρ we

construct on π1(FIPSo) will act in the canonical way (see §5.1) on toric

loops (including αβi), this property will be automatic as the corresponding

line bundles are trivial (since the divisors making up Y are in the FIPS).

(2) Using the Lefschetz hyperplane theorem (see Corollary 9.14) with the toric

hyperplane D ∶= 4(D′
1 +D′

3 +D′
6)+6(D′

7 +D′
8 +D′

9), we’ll see that there is a

family depending on ε ∈ R>0 of neighbourhoods Uε ofD in FIPSo which, for ε

sufficiently small, contains the homotopy 1-type and so π1(FIPSo) ≅ π1(Uε).
(3) So we want to understand π1(Uε). For this, we’ll introduce another family

of neighbourhoods of D in FIPSo depending on δ ∈ R>0 called Vδ. By

construction, we understand the topology of Vδ better than that of Uε. We’ll
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show (see Lemma 9.18) that they are homotopy equivalent for δ sufficiently

small and so we can work with Vδ instead.

Explicitly, Vδ is defined by gluing together near large radius regions near

torus invariant divisors, curves and points in D. Specifically, recall the near

large radius regions Vβ , VW and VC from §5.2 near these respective toric

subvarieties, where β is a ray of the secondary fan, W is a 2-dimensional

cone and C is a chamber. The construction of these regions depend on

certain choices, but, having made all these choices (see Lemma 9.17), we

can define the region Vδ ∶= ⋃VCk ∪⋃VWj ∪⋃Vβi ⊂ FIPSo which will be a

neighbourhood of D in FIPSo.

(4) By the van-Kampen theorem, π1(Vδ) is obtained by gluing together the

fundamental groupoids of the cover. Moreover, we know from Proposition

5.20 how to define our representation on near large radius regions VC and

VW near torus invariant points and curves respectively. This is because

there are no near large radius complications for the curves Z(W ) in D, as

we remarked at the beginning of this section. We also know from Remark

5.24 that the representations on these regions near points and curves glue

together canonically to give a representation ρ of the fundamental groupoid

of the region ⋃VCk ∪⋃VWj ⊂ Vδ ⊂ FIPSo.

(5) Now we want to define the representations ρi on π1(Vβi). Recall that the

regions VWj and Vβi come with a fibration structure, which here we denote

by πWj and πβi respectively. Then the base B of this fibration is a punc-

tured 2-dimensional polydisk and a punctured disk respectively. Therefore,

the fibres π−1
Wj

(b) and π−1
βi

(b) are 1- and 2-dimensional respectively and play

the role of the push-off of the large radius curve Z(Wj) and large radius di-

visor FIPSo(Fi), where FIPSo(Fi) is the complement of the toric boundary

in FIPS(Fi). Then Remark 5.17 tells us that π1(Vβi) ≅ π1(π−1
βi

(b)) ⋊ ⟨αβi⟩
where the action on π1(π−1

βi
(b)) is by monodromy around B. Since the

discriminant locus is transverse to D, we get (see Lemma 9.20) a homo-

topy equivalence π−1
βi

(b) ≃ FIPSo(Fi). We’ve already remarked that the

monodromy in VW near the large radius curve Z(W ) is trivial. We’ll see

that all the generators of π1(π−1
βi

(b)) live in regions of the form VW and so

it follows that the monodromy action on π1(π−1
βi

(b)) is trivial. Therefore

π1(Vβi) ≅ π1(FIPSo(Fi)) × ⟨αβi⟩.
(6) Up to the S3-symmetry of the Triangle VGIT, there are only two possibili-

ties for FIPSo(Fi). For i = 7,8,9, FIPSo(Fi) can be described as the hyper-

plane complement from Example 7.6 (with the coordinates axes deleted).

Hence π1(FIPSo(Fi)) has a simple presentation, generated by large radius

paths subject to 4 additional explicit relations. For i = 1,3,6, FIPS(Fi) is

exactly the FIPS of the Pentagon VGIT from §7.3 and so again we have

already described an explicit presentation generated by large radius paths

in Proposition 7.25.
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Given these explicit presentations of π1(FIPSo(Fi)), we can construct

a representation of them on the Triangle VGIT. Moreover, this extends

naturally (αβi acts by tensoring by the corresponding line bundle) to give

representations ρi of π1(Vβi) for i in D.

(7) Finally, we check that ρi and ρ glue together on intersections.

Remark 9.9. In (1), we remarked that, since the FIPS is stacky, we want to delete

the stacky locus and work on FIPSo instead. Alternatively, we could just use

a stacky quasi-projective Lefschetz theorem but, unfortunately, such a theorem

at this level of generality doesn’t seem to exist yet (though see [23] for a stacky

projective Lefschetz theorem). As such, we adopt a roundabout approach to using

the Lefschetz hyperplane theorem by passing through the coarse moduli space ∣F∣,
which is a singular toric variety, and using the quasi-projective Lefschetz theorem

for singular schemes which we review in §9.2.1.

So what we have left to check is as follows:

(1) (§9.2.1) Check that D is ample and use the Lefschetz hyperplane theorem.

(2) (§9.2.2) Pick the data defining the regions Vβi for each D′
i in D, VWj for

each wall Wj in D and VCk for each chamber Ck in D. These regions all

depend on δ ∈ R>0 but we drop this from the notation. This data defines

Vδ.

(3) (§9.2.2) Prove π1(Uε) ≅ π1(Vδ) for δ sufficiently small.

(4) (§9.2.2) Prove that the 2-dimensional fibre π−1
βi

(b) of πβi ∶ Vβi → B is ho-

motopy equivalent to FIPSo(Fi).
(5) (§9.2.3 and §9.2.4) Construct representations ρi ∶ π1(FIPSo(Fi)) → Cat1

for each i in D. By the S3-symmetry, we actually need only do this for

i = 1,8.

(6) (§9.2.5) Check that ρ and ρi glue together

Remark 9.10. It will follow from our eventual description of π1(FIPS) that the

fundamental group based at the phase which is isomorphic to HilbG(C3), which

here we call X3, is generated by toric loops plus certain loops consisting of large

radius paths. Up to the S3-symmetry, in fact the generating loops of the second

type live solely in the push-off of FIPS(F1). If we pick 5 basepoints pi near the

torus fixed points pCi in D′
1 (see Figure 26), such loops are roughly given by:

(1) Going from p3 to p1 and back to p3, looping the component ∇pr.
(2) Going from p3 to p2 and back to p3, looping the component ∇pr.
(3) Going from p3 to p1, then to p4 and back to p1 (looping the component ∇1)

and finally back to p3 along the original path.

(4) Going from p3 to p2, then to p5 and back to p2 (looping the component ∇1)

and finally back to p3 along the original path.

The corresponding autoequivalences are as follows:

(1) We let X1 be the phase corresponding to C1 and Z4,5 denote the curve in

X3 corresponding to the codimension 1 cone generated by the rays ω4 and
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ω5. Then Z4,5 is a P1 with NZ4,5/X3
≅ OP1(−1)⊕2. Then looping ∇pr gives

a spherical twist around a sheaf supported on Z4,5.

(2) We let X2 be the phase corresponding to C2 and Z2,5 denote the curve in

X3 corresponding to the codimension 1 cone generated by the rays ω2 and

ω5. Then Z2,5 has the same normal bundle as Z4,5 and looping ∇pr gives a

spherical twist around a sheaf supported on Z2,5.

(3) Use a window equivalence to identify X3 with the phase X1. In X1, the toric

divisor D5 is fibred over a base C with fibre a P1 and ND5/X1
≅ OD5(−2), so

this is a family of (−2)-curves. Then the auto-equivalence corresponding to

looping around ∇1 is a family version of spherical twists around (−2)-curves

in a surface. In particular, this auto-equivalence is supported on D5.

(4) Use a window equivalence to identifyX3 with the phaseX2. Again, the toric

divisor D5 is fibred over a base C with fibre a P1 and ND5/X2
≅ OD5(−2),

so this is a family of (−2)-curves. Then the auto-equivalence corresponding

to looping around ∇1 is again a family version of spherical twists around

(−2)-curves in a surface and hence supported on D5.

9.2.1. The Lefschetz hyperplane theorem. The version of the quasi-projective Lef-

schetz hyperplane theorem that we will need is:

Theorem 9.11 ([26], Theorem 1.1.1). Let X be a projective subvariety in PN ,

Z ⊂X a subvariety and L a hyperplane in PN such that X/(Z ∪L) is non-singular.

Identifying PN /L with CNz1,...,zN , we let VR(L) ∶= PN /{∑ ∣zi∣2 < R} be a tubular

neighbourhood of L in PN . Then X/Z has the homotopy type of a space obtained

from VR(L)∩ (X/Z) (for R sufficiently large) by adding cells of dimension at least

dimC(X) (where this homotopy equivalence is the identity on VR(L) ∩ (X/Z)).

One can prove this via Morse theory analogously to Andreotti and Frankel’s

proof of the usual projective Lefschetz theorem [2]. The subtlety is controlling the

(pseudo-)gradient flow so that it preserves Z, which can be very singular. The key

technique for doing this is using an algebraic Whitney stratification of X such that

Z is a union of strata. We’ll return to this in Lemma 9.20.

Remark 9.12. This theorem should be enough to see the claim in Remark 6.25

that, when the FIPS is 2-dimensional, π1(U) generates π1(FIPS) where U is the

union of the near large radius regions VW for all walls W . Certainly, it follows from

the theorem that some tubular neighbourhood of the toric boundary generates

π1(FIPS) by taking X = ∣F∣, Z the discriminant and L an ample (reducible) toric

divisor containing all irreducible toric divisors with multiplicity at least 1. Then,

noting X/L ≅ TL∨ is smooth, the homotopy 1-type of the FIPS (=X/Z) is generated

by VR(L) ∩ FIPS, which is a tubular neighbourhood of the toric boundary in the

FIPS. This tubular neighbourhood should be homotopic to U by a similar argument

to Lemma 9.18 below, but we haven’t checked the details.
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We apply Theorem 9.11 to the Triangle VGIT as follows. Recall that we denote

the toric divisor in F corresponding to βi by D′
i.

Lemma 9.13. The torus invariant divisor (invariant also under the S3-symmetry)

D = a(D′
1 +D′

3 +D′
6) + b(D′

7 +D′
8 +D′

9) is ample precisely when a > 0, b > 0 and

2a > b > a.

Proof. By standard toric geometry ([14], Theorem 6.1.14), we need to prove that the

piecewise-linear function on the secondary fan which sends βi ↦ −a for i = 1,3,6,

βj ↦ −b for j = 7,8,9 and βk ↦ 0 for k = 2,4,5 is strictly convex. This is a

straightforward computation. �

Now let ∣F∣ be the singular toric variety corresponding to the secondary fan –

that is, the coarse moduli space of F. Then it follows from [14], Theorem 6.1.14

that D ∶= 4(D′
1 +D′

3 +D′
6) + 6(D′

7 +D′
8 +D′

9) is a very ample divisor on ∣F∣ and we

take ∣F∣ embedded in PN by the complete linear series on D. As such, we have a

hyperplane L ⊂ PN such that L∩ ∣F∣ =D. Let Z ∶= ⋃i=1,⋯,9D
′
i∪∇pr∪⋃j=1,2,3∇j ⊂ ∣F∣

be the union of all components of the discriminant as well as the 3 toric divisors in

the FIPS, so that ∣F∣/Z = FIPSo.

Corollary 9.14. Define Uε ∶= PN /{ 1
∑ ∣zi∣2 > ε} ∩ FIPSo. Then Uε, for ε sufficiently

small, has the same homotopy 1-type as FIPSo. In particular, π1(FIPSo) ≅ π1(Uε).

Proof. Take X = ∣F∣ and Z and L as above. Then X/(Z ∪L) ⊂ TL∨ is non-singular

so we may apply Theorem 9.11. As dim(X) = 3, we get that X/Z = FIPSo has the

same homotopy 1-type as V1/ε(L) ∩ FIPSo = Uε for ε sufficiently small. �

9.2.2. Near large radius regions near D. In this section, we define the various near

large radius regions whose union is a neighbourhood Vδ of D in FIPSo and prove

the fiddly results which describe their topology.

Most of the notation here aligns with §5.2. Additionally, recalling that βi define

the rays of the secondary fan, we let Wij = ⟨βi, βj⟩ be the wall – that is, codimension

1 cone in the secondary fan – generated by βi and βj when this really is a cone of

the secondary fan and Wij = ∅ when it isn’t. Similarly, we let Cijk = ⟨βi, βj , βk⟩
when this is a maximal cone of the secondary fan and Cijk = ∅ when it isn’t.

Recall from §5.2 that to define the near large radius region VW ⊂ FIPSo near the

large radius curve Z(W ) we need to pick a fibration structure. This is determined by

choosing βW ∈ L∨ such that ⟨βW , λW ⟩ = ±1 (here λW ∈ L is either choice of primitive

normal to W ) and then the corresponding 1-dimensional fibres will be contained

in βW -orbits. Similarly, to define the fibration structure on the near large radius

region Vβ near a toric divisor, we need to pick λβ ∈ L such that ⟨β,λβ⟩ = 1 and the

fibres will live in orbits of the rank 2 torus TL∨
β
, where L∨β = {⟨−, λβ⟩ = 0} ⊂ L∨.

Recall from Figure 24 that there are 13 non-empty chambers Cijk near D, 18 non-

empty walls Wij near D and 6 rays βi near D. Up to the S3-symmetry of the
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secondary fan, we need only focus on 4 of these walls (say W16,W15,W18,W58) and

2 of these rays (say β1, β8). For these walls and rays, we pick the following data:

● λβ1 = (1,0,0), λβ8 = (0,−1,0)
● βW16 = (0,1,0), βW15 = (0,0,1), βW18 = (0,0,1), βW58 = (1,0,0)

Now that we have fixed the fibration structure, we need to pick the subsets Vβi

and VWij near D′
i and Z(Wij) respectively. This amounts to two choices:

● A closed subset EWij ⊂ TL∨/Wij
of the open torus inside Z(Wij) which is a

deformation retract and a similar region Eβi ⊂ TL∨/βi inside the open torus

in D′
i such that FIPSo(Fi) ∩Eβi ⊂ FIPSo(Fi) is a deformation retract. We

then consider only points in F which limit under any of the 1-PS in the

relative interior of the wall Wij to EWij and similarly only points which

limit under βi to Eβi .

● Having made this choice, we then need to shrink the base B′ of the fibration

to a region B in order to guarantee that it remains a fibration when we

delete the discriminant.

Remark 9.15. This section would be a lot simpler if we could just pick regions Vβi

near each divisor D′
i in D which together form a neighbourhood of D. Unfortu-

nately, as we have seen in 2-dimensions, we can’t just take Eβi = TL∨/βi because

the rank 2 TL∨
βi

-orbit (in which the fibres of πβi live) typically limits to multiple

divisors in F. As such, the whole of this orbit doesn’t remain near D′
i and we

have to define Vβi using a region Eβi which is strictly smaller than TL∨
βi

. But then

Vβi ∩ Vβj is strictly smaller than VWij and so the regions Vβi on their own won’t

form a neighbourhood of D. Thus we are forced to add in regions of the form VWij .

We also need these regions to depend on δ ∈ R>0 in such a way that, as δ → 0,

these regions shrink down to the corresponding divisor D′
i and curve Z(Wij). We

accomplish this by picking an explicit punctured (poly)disk B in the base of the

fibration which depends on δ, as we now describe.

● Since there are no toric divisors in FIPSo, we must delete the fibre over the

torus fixed point 0 ∈ B′ for Vβ to be a subset of FIPSo. Thus πβ ∶ Vβ → B is a

fibration over a punctured diskB. HereB has a natural coordinate b coming

from the natural coordinate on the toric variety B′(≅ C) in which it sits.

Then we can take B = Bδ = {∣b∣ ≤ δ} ⊂ C∗ and so the subset V δβ also depends

on δ. Explicitly, if we take coordinates X,Y,Z on the torus TL∨ such that

π∗βi(b) = x
λβi = X and Y,Z ∈ L are invariant under the 1-PS βi – that is,

lie in the hyperplane defined by βi – then V δβi = {∣X ∣ ≤ δ, (Y,Z) ∈ Eβi}.

● Recall (see §5.2) that πW ∶ VW → B is only a fibration away from a divisor

Z ⊂ B where B is a punctured polydisk. However, in this case, as all the

walls W near D have intersection multiplicity mW = 1, πW is a fibration

over all of B. The affine toric variety B′ for the walls W16,W15,W18 is just

C2
b1,b2 and for W58 is the smooth orbifold [C2

b1,b2 /Z2] (B′ is an orbifold

here because Z(W58) supports a Z2-orbifold locus – see §9.2.3). Then we
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can take B = Bδ = {∣b1∣ ≤ δ, ∣b2∣ ≤ δ} ⊂ (C∗)2 for the first 3 walls and

B = Bδ = {∣b1∣ ≤
√
δ, ∣b2∣ ≤

√
δ}/Z2 ⊂ (C∗)2/Z2 for W58. Again the subset

V δW also depends on δ. Explicitly, if we take coordinates X,Y,Z on TL∨

such that π∗Wij
(b1) = X,π∗Wij

(b2) = Y and Z = xλWij then V δWij
= {∣X ∣ ≤

δ, ∣Y ∣ ≤ δ,Z ∈ EWij}.

● For the punctured polydisk VC , we pick a description of the toric open set

UC ⊂ F as [C3 /G] with coordinates bi on C3 for i = 1,2,3. Then we can

choose V δC = {∣b1∣ ≤ δ, ∣b2∣ ≤ δ, ∣b3∣ ≤ δ}/G ⊂ (C∗)3/G.

So each near large radius region we are considering depends on a choice of δ

which in principle we could vary independently. But we are looking to glue all of

these regions together to construct a single family Vδ of neighbourhoods of D in

FIPSo which depends on δ and shrinks down to D as δ → 0. As such, for each

βi, we’re going to pick an increasing continuous function fi ∶ R>0 → R>0 and take

V
fi(δ)
βi

as part of our neighbourhood. Similarly for Wij and Cijk we’re going to pick

fij and fijk and take the corresponding subsets V
fij(δ)
Wij

and V
fijk(δ)
Cijk

as part of our

neighbourhood.

Remark 9.16. Note that, in order to maintain the property that the union of these

regions is a neighbourhood on D for all δ sufficiently small (as in (1) in Lemma

9.17), the regions Eβi and EWij also need to depend on δ – in fact, they should

grow with δ, since the punctured polydisks VCijk shrink with δ.

The next lemma says that, for every δ, we can make all these additional choices

in such a way that we can guarantee that their union is a neighbourhood of D in

FIPSo. Moreover, it says that, for every δ, we can choose the intersections between

these regions to be particularly simple. This will make the gluing relations between

the representations ρi on different faces transparent when we come to check them

in §9.2.5.

Lemma 9.17. We can define subsets V
fi(δ)
βi

⊂ FIPSo near each D′
i in D, V

fij(δ)
Wij

near each Z(Wij) in D and V
fijk(δ)
Cijk

near each torus fixed point in D which have

the following properties:

(1) If we define:

Vδ ∶=⋃V
fijk(δ)
Cijk

∪⋃V
fij(δ)
Wij

∪⋃V
fi(δ)
βi

⊂ FIPSo

then Vδ′ ⊂ Vδ for δ′ ≤ δ and the closure V̄δ in ∣F∣ is a neighbourhood of D.

(2) ⋂δ↓0 V̄δ =D
(3) The subsets respect the S3-symmetry (see Remark 9.2)

(4) Two of these subsets meet precisely if one of the corresponding toric subva-

rieties of ∣F∣ is contained in the other.

(5) V
fi(δ)
βi

∩ V fij(δ)Wij
⊂ V fij(δ)Wij

(where V
fij(δ)
Wij

= ∅ if Wij = ∅) is a deformation

retract

(6) V
fi(δ)
βi

∩V fijk(δ)Cijk
⊂ V fijk(δ)Cijk

(where V
fijk(δ)
Cijk

= ∅ if Cijk = ∅) is a deformation

retract
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(7) V
fij(δ)
Wij

∩ V fijk(δ)Cijk
⊂ V fijk(δ)Cijk

is a deformation retract

Proof. This is elementary but tedious so we don’t give all the details. Start by

taking coordinates on TL∨ ≅ (C∗)3
X,Y,Z which correspond to the standard basis in

L∨ = Z3. As λβ1 = (1,0,0), xλβ1 = X is the coordinate on the base B and Y,Z

are invariant under β1 so V δβ1
= {∣X ∣ ≤ δ, (Y,Z) ∈ Eβ1}. We can choose Eβ1 =

{∣Y ∣ ≤ 1/δ, ∣Z ∣ ≤ 1/δ}: this is a valid choice of Eβ1 because the co-rank 1 torus

orbit X = δ in V δβ1
stays bounded as Y → 0 and Z → 0 – otherwise, we would

have to delete a small neighbourhood of Y = 0 and Z = 0 from Eβ1 too. With this

choice, V δβ1
= {∣X ∣ ≤ δ, ∣Y ∣ ≤ 1/δ, ∣Z ∣ ≤ 1/δ}. Then the S3-symmetry implies that

V δβ6
= {∣X ∣ ≤ 1/δ, ∣Y ∣ ≤ 1/δ, ∣Z ∣ ≤ δ}. Hence V δβ1

∩ V δβ6
= {∣X ∣ ≤ δ, ∣Y ∣ ≤ 1/δ, ∣Z ∣ ≤ δ} for

δ sufficiently small. But βW16 = (0,1,0) and so X,Z are coordinates on the base

B and, as λW16 = (0,1,0), xλW16 = Y and so V δW16
= {∣X ∣ ≤ δ, ∣Z ∣ ≤ δ, Y ∈ EW16}.

Hence if we define EW16 ⊂ Z(W16) to be the cylinder ∣Y ∣ ≤ 1/δ, we see that we

can guarantee V δβ1
∩ V δβ6

= V δW16
in this case. Continuing in this way, we can find

the other near large radius regions and check the relevant properties. Note that in

general, we are not able to guarantee that the intersections are actually equal, just

a deformation retract of the smaller one. �

We assume from now on that we have fixed such a choice of regions for each

δ and drop the explicit choices from the notation. For example, Vβi will refer to

V
fi(δ)
βi

with a choice of Eβi as in Lemma 9.17.

Lemma 9.18. For ε sufficiently small, Uε is homotopy equivalent to Vδ.

Proof. It suffices to show that:

● For any δ sufficiently small, we can find ε such that Uε ⊂ Vδ
● For any ε sufficiently small, we can find δ such that Vδ ⊂ Uε
● For any ε′ ≤ ε sufficiently small, the inclusion Uε′ ⊂ Uε is a homotopy

equivalence.

● For any δ′ ≤ δ sufficiently small, the inclusion Vδ′ ⊂ Vδ from Lemma 9.17

(1) is a homotopy epimorphism.

To see that these four properties are sufficient, use them to find a Vδ ⊂ Uε and

a Uε′ ⊂ Vδ. Then the inclusion Uε′ ⊂ Uε is a homotopy equivalence which factors

through Vδ and so Uε′ ⊂ Vδ is a homotopy monomorphism. Now find a Vδ′ ⊂ Uε′ .
Similarly the inclusion Vδ′ ⊂ Vδ is a homotopy epimorphism which factors through

Uε′ and so the inclusion Uε′ ⊂ Vδ is a homotopy epimorphism. Being a homotopy

monomorphism and epimorphism is enough to guarantee that the inclusion Uε′ ⊂ Vδ
is a homotopy equivalence.

We now check these properties:

● For contradiction, suppose we could find a sequence xi ∈ Vδi with δi ↓ 0 such

that xi ∉ Uε. Then the closure V̄δ in ∣F∣ is compact and so some subsequence

xj converges to x ∈ V̄δ. But then x ∈ ⋂ V̄δ = D by (2) in Lemma 9.17. But

xj ∉ Uε means that f(xj) > ε where f ∶= 1
∑ ∣zi∣2 ∶ ∣F∣ → [0,∞] is the function
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in the definition of Uε. Thus f(x) ≠ 0. This is a contradiction as f vanishes

precisely on D.

● For contradiction, suppose we could find a sequence xi ∈ Uεi with εi ↓ 0

such that xi ∉ Vδ. Then the closure Ūε of Uε in ∣F∣ is compact and so

some subsequence xj converges to x ∈ Ūε. But then x ∈ ⋂ Ūε = D since

Ūε = {f ≤ ε} where f is the function above. But, by (1) in Lemma 9.17, V̄δ

is a neighbourhood of D in ∣F∣ and so xi ∈ Vδ for i sufficiently large, which

is a contradiction.

● The fact that Uε is homotopy equivalent to Uε′ follows immediately from

[26], §1.4.3. This is basically because we can modify the gradient flow of f

to preserve the discriminant.

● To show that the inclusion Vδ′ ⊂ Vδ is a homotopy epimorphism, it suffices

to construct a vector field on Vδ whose time-1 flow is contained in Vδ′ . To

do this, we first construct a nowhere-zero vector field on each near large

radius region V δ (this notation refers to any of the regions V δβi , V
δ
Wij

, V δCijk
and should not be confused with their union Vδ) in our cover whose time-1

flow is contained in V δ
′
. By construction, on each region we can find a 1-PS

of TL∨ whose flow preserves the closure V̄ δ in ∣F∣ and shrinks the (poly)disk

in the base B. In fact, any β ∈ L∨ in the interior of the corresponding cone

of the secondary fan will do. Then the time-1 flow sends V̄ δ to V̄ δ
′

for

δ′ < δ.
Unfortunately, this flow doesn’t preserve the discriminant in general but,

near the discriminant, we can modify it using an algebraic Whitney strati-

fication as in the proof of Lemma 9.20 so that it does whilst continuing to

preserve V̄ δ and shrinking the (poly)disk in B (it follows that this vector

field is nowhere-zero). As such, this modified time-1 flow still sends V̄ δ

to V̄ δ
′

and hence sends V δ to V δ
′

as desired. We note in passing that,

because we only need our flow to send V δ to V δ
′

and not to D, we do not

need transversality of D to the discriminant here since the fibres of the

fibration on V δ away from D are already transverse to the discriminant (by

our choice of B).

Having constructed these vector fields on each region in our cover, we

then use a partition of unity to glue them together to get a vector field on

Vδ. Because we are forming positive linear combinations of vector fields

which preserve the discriminant, the glued vector field also preserves the

discriminant. Moreover, because each vector field shrinks the corresponding

(poly)disk in the base and we are taking a positive linear combination of

them, the glued vector field also has this property. As such, it is nowhere-

zero and, in fact, its flow must send V̄δ to V̄δ′ . This implies that the flow

sends Vδ to Vδ′ as desired.

�
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Remark 9.19. We note that in the proof we don’t use any form of transversality to

D so we could hope that this result holds more generally.

We now turn to understanding the push-offs into FIPSo of the toric divisors D′
i

that make up D.

Lemma 9.20. The fibre π−1
βi

(δ) of πβi ∶ Vβi → B is homotopy equivalent to FIPSo(Fi)
for all i in D.

What makes this result possible is that the discriminant is “transverse” to the

divisors in D. As we have already remarked in §2, the discriminant is singular –

in fact, it’s reducible – and so here transverse doesn’t make sense. We’ll see in

the proof that what matters is that each toric divisor D′
i in D is transverse to

every stratum of an algebraic Whitney stratification (see [21], Part 1, §1.2) of the

discriminant locus.

Remark 9.21. Whilst the proof below involves explicit descriptions of the various

regions, the only property of the discriminant which it uses is that the components

of the discriminant and their intersections are smooth near D. This allows us to

construct a particularly nice algebraic Whitney stratification which is easily seen

to be transverse to D.

Remark 9.22. In principle, we need to know the same result for the 1-dimensional

fibres of πWij – that is, that they are homotopy equivalent to the complement of

the discriminant in Z(Wij). However, this is immediately clear from the explicit

description of these regions in §5.2 since the intersection multiplicity mWij = 1

and so the fibres of πWij are cylinders punctured at a single point. Nonetheless,

if we wanted, we could use a similar proof to construct a flow which realises this

homotopy equivalence.

Proof. By our choice of Eβi , Eβi ∩FIPSo(Fi) is a deformation retract of FIPSo(Fi).
The basic idea of the proof is to observe that πβi extends over the closure V̄βi to

the proper map π′βi ∶ V̄βi → B′ (from the construction of Vβi in §5.2) such that,

if we delete the non-toric parts of the discriminant, the fibre of π′βi over 0 ∈ B′

is Eβi ∩ FIPSo(Fi) and the fibre over δ ∈ B′ is π−1
βi

(δ). As such, it will suffice to

identify fibres of π′βi near 0 in such a way as to preserve the non-toric parts of the

discriminant. This identification uses Thom’s first isotopy lemma (see [21], Part 1,

§1.5) which is valid because of the transversality mentioned above. In what follows,

we shall construct a flow giving rise to this identification explicitly, as we will need

the identification to have certain properties (see Remark 9.23) in §9.2.5.

Firstly, by (3) from Lemma 9.17, we have chosen Vβi to respect the S3-symmetry

of the Triangle VGIT and so it will suffice to prove this for coset representatives of

the faces Fi in D – here we choose i = 1,8. The standard basis of L∨ = Z3 identifies

TL∨ ≅ (C∗)3
X,Y,Z in such a way that X,Y,Z are coordinates on the toric open subset

UC136 of ∣F∣. In particular, these give coordinates near D1. Then one checks that
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X ′ = XY , Y ′ = Y −1 and Z ′ = Y Z give coordinates on the toric open subset UC168

which is near D8.

For i = 8, we therefore use coordinates X ′, Y ′, Z ′. Since λβ8 = (0,−1,0), xλβ8 = Y ′

and so Vβ8 ⊂ FIPSo is of the form {∣Y ′∣ ≤ δ, (X ′, Z ′) ∈ Eβ8}, π−1
β8

(δ) is the hyperplane

{Y ′ = δ} ⊂ Vβ8 and D′
8 ∩ UC168 = {Y ′ = 0}. In these coordinates, ∇1 = {Z ′ = 1/4}

and ∇3 = {X ′ = 1/4}. Moreover, we shall see in §9.2.3 that these are the only

two components that meet D′
8. As such, for δ sufficiently small, Vβ8 is just the

complement of these two hyperplanes (and the toric boundary) in the closure V̄β8

in ∣F∣. Then it is straightforward that the gradient flow of ∣Y ′∣2 on V̄β8 preserves Vβ8

(and fixes Eβ8 in D′
8) and the limiting flow identifies π−1

β8
(δ) with Eβ8 ∩FIPSo(F8).

For i = 1, we use coordinates X,Y,Z. Since β1 = (1,0,0), xλβ1 = X and Vβ1 ⊂
FIPSo is of the form {∣X ∣ ≤ δ, (Y,Z) ∈ Eβ1}, π−1

β1
(δ) = {X = δ} ⊂ Vβ1 and D′

1∩UC136 =
{X = 0}. In these coordinates, ∇pr = {4XY Z + 1 = X + Y + Z},∇1 = {Y Z = 1/4}.

Moreover, we’ll see in §9.2.4 that only these two components of the discriminant

meet the toric divisorD′
1. As such, for δ sufficiently small Vβ1 is just the complement

of these two components (and the toric boundary) in the closure V̄β1 in ∣F∣.
Unfortunately, this case is harder than the i = 8 case as the gradient flow of ∣X ∣2

does not preserve the discriminant. However, we can modify the gradient flow of

∣X ∣2 such that it does. To this end, we pick an algebraic stratification of the closure

V̄β1 as follows. Let

V0 ∶= ∇pr ∩∇1 = {Y = Z = 1/2}, V1 ∶= ∇pr/V0, V2 ∶= ∇1/V0, V3 ∶= V̄β1/∇1 ∪∇pr

Then V = {Vi} is a stratification of V̄β1 with non-singular strata such that the

discriminant Z = ⋃i=0,1,2 Vi is a union of strata. Moreover, since the closure of each

stratum in V̄β1 is smooth, it follows that V satisfies Whitney’s condition b) (see

[21], Part 1, §1.2).

An easy check confirms that the toric divisor D′
1 in F is transverse to all the strata

Vi. Then, as in [26], §1.3.4, we can modify the gradient vector field of ∣X ∣2 near the

discriminant in V̄β1 so that the new vector field preserves the discriminant. To see

this, starting with V0 and working up to V̄β1 , Whitney’s condition b) guarantees

that we can find a vector field v on an open neighbourhood U of Z in V̄β1 which

preserves each stratum and which lifts (under π′β1
) the gradient vector field of ∣X ∣2.

As each torus invariant curve Z(W ) in D′
1 is transverse to the discriminant, the

part of the boundary ∂V̄β1 near Z(W ) is also transverse to the discriminant. As

such, we can assume that v is tangent to these parts of the boundary in U – that

is, the subset {(X,Y,Z) ∈ U ∣ (Y,Z) ∈ ∂Eβ1}.

Using a partition of unity to glue together v on U with the gradient vector field

of ∣X ∣2 outside U gives a vector field on V̄β1 which preserves Z (and the “horizontal”

part of the boundary mentioned above) and identifies fibres of π′β1
. Therefore the

limiting flow identifies π′−1
β1

(δ) with Eβ1 in such a way that the open subset π−1
β1

(δ)
of the former gets identified with Eβ1 ∩FIPSo(F1). This is what we wanted, so we

are done. �
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Remark 9.23. Here we collect a few properties of the homotopy equivalence con-

structed in the proof of the previous lemma which will be needed in §9.2.5 to check

the gluing relations between the representations ρi associated to different faces.

Away from the (non-toric parts of the) discriminant, the flow is just the gradient

flow of ∣X ∣2 where X = xλβi is the coordinate on the torus TL∨ defining the fibration

πβi on Vβi . As toric loops αβ in π−1
βi

(δ) are not near the discriminant, this means

that they get identified with toric loops αβ̄ in FIPSo(Fi) where β̄ = β ∈ L∨/βi.
As the flow preserves the horizontal part of the boundary, it identifies the region

VWij ∩ Vβi ⊂ Vβi with a region near Z(Wij) inside Eβi ∩ FIPSo(Fi). Moreover, it

sends large radius paths living in a fibre π−1
Wij

(b) in this boundary (hence contained

in a βWij -orbit) to large radius paths which live in a β̄Wij -orbit, where β̄Wij ∶=
βWij ∈ L∨/βi.

9.2.3. Representation for the face F8. In this section, we describe the secondary

stack for the VGIT on F8, which we call F(F8), and the complement of the dis-

criminant in F(F8), which we call FIPS(F8). We then construct a representation

ρ8 of π1(FIPSo(F8)) on the phases of the Triangle VGIT, where FIPSo(F8) is the

complement of any remaining parts of the toric boundary in FIPS(F8).
The polyhedral subdivision associated to F8 (shown in the middle of Figure 25

(L)) is the product of 2 independent VGITs – that is, to get the phases we can

triangulate each polygon independently of the other. As such, F(F8) is the product

of the secondary stacks of the constituent VGITs and hence F(F8) ≅ P(2,1)×P(2,1)
(with coordinates (b1, b2) for the first factor and (b6, b5) for the second).

Alternatively we can see this directly by quotienting L∨ by β8 = (1,−1,1) via

p8 ∶ L∨ = Z3 ↠ L∨/β8 ≅ Z2, (x, y, z)↦ (x + y, y + z)

and checking that the projection of the stacky secondary fan nearby β8 gives the

stacky fan for P(2,1) × P(2,1). The generators – that is, β from §3.4 applied to

the standard basis – of this fan are β̄i ∶= p8(βi) for βi adjacent to β8 – that is, for

i = 1,2,5,6 – and are shown in Figure 25 (R).

The four phases of the Triangle VGIT near F8 are shown in Figure 25 (L).

Using Theorem 3.33, one checks that the discriminant (shown as the dashed lines

in Figure 25 (L)) consists of the two toric divisors {b1 = 0} and {b6 = 0} as well

as the two lines `1 ∶= {b25 = 4b6} and `2 ∶= {b22 = 4b1}. As such, FIPS(F8) is the

complement of these four lines in F(F8) and is therefore the product of two copies

of FIPS(F ′
8) ∶= P(2,1)/{[0,1], [1,2]}.

Remark 9.24. We note that FIPS(F ′
8) is the FIPS for the linear rank 1 toric VGIT

defined by either of the 2 pieces of the subdivision associated to F8. We’ll refer to

either of these two VGITs (defined by toric data of the form L = Z
Q∨
Ð→ Z4 → N = Z3

where Q∨ = (1,−2,1,0)) as the VGIT on F ′
8.

Remark 9.25. Note that in FIPS(F8) there are two lines of Z2-orbifold points

(namely {b2 = 0} and {b5 = 0}) meeting in a Z⊕2
2 -orbifold point at the bottom
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`2

`1

Z⊕2
2

Z2-orbifold line

Z2

orbifold
line

β̄1 = (1,0)β̄2 = (−2,0)

β̄6 = (0,1)

β̄5 = (0,−2)

C1C2

C3 C4

Figure 25. The secondary polytope (with the four phases shown)
(L) and secondary fan (R) of the VGIT on the face F8

left corner of Figure 25 (L). This Z⊕2
2 -orbifold point in D′

8 in turn meets one of

the lines of Z2-orbifold points in the FIPS of the Triangle VGIT (see §9.1.3). As

mentioned in §9.2, these orbifold points are why it is easier from a technical point

of view to work with FIPSo. Here we see that FIPSo(F8) ≅ (C∗)2/(`1 ∪ `2) indeed

has no orbifold points to worry about.

We now move on to constructing the representation ρ8. The topology in this

case is straightforward. Recall that in Example 7.6 we considered the hyperplane

arrangement {X = 1} ∪ {Y = 1} inside C2
X,Y . Then picking coordinates X ∶=

4b1/b22, Y ∶= 4b6/b25 gives an isomorphism between the open subset of D′
8 away from

the orbifold locus and C2
X,Y in such a way that FIPSo(F8) gets identified with

(C∗)2/{X = 1}∪{Y = 1}. Note that, under this identification, the generating paths

αi, βi from Example 7.6 correspond to large radius paths in the regions {∣Y ∣ <
r}, {∣X ∣ > 1/r}, {∣Y ∣ > 1/r}, {∣X ∣ < r} respectively for i = 1,⋯,4 and for any r

sufficiently small. If we glue these four regions together to get:

U ∶= {∣Y ∣ < r} ∪ {∣X ∣ > 1/r} ∪ {∣Y ∣ > 1/r} ∪ {∣X ∣ < r} ⊂ C2 /{X = 1} ∪ {Y = 1}

then we can interpret Example 7.6 as saying that π1(C2 /{X = 1} ∪ {Y = 1}) is

generated by π1(U) subject to 4 explicit relations.

Remark 9.26. This region U is analogous to the large radius regions with the same

name in §7.

If we now delete the coordinate hyperplanes X = 0 and Y = 0, we’ll see that this

gives the following presentation for π1(FIPSo(F8)):

Lemma 9.27. If we let U ′ ∶= U ∩FIPSo(F8), π1(FIPSo(F8)) ≅ π1(U ′)/RF8 where

RF8 is the normal subgroupoid generated by the relations:

(1) γ−1
C4,C1

○ γ−1
C3,C4

= γ−1
C2,C1

○ γ−1
C3,C2

(2) γ−1
C3,C4

○ γ−1
C2,C3

= γ−1
C1,C4

○ γ−1
C2,C1
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(3) γ−1
C1,C2

○ γ−1
C4,C1

= γ−1
C3,C2

○ γ−1
C4,C3

(4) γ−1
C2,C3

○ γ−1
C1,C2

= γ−1
C4,C3

○ γ−1
C1,C4

Remark 9.28. Here we have relabelled the generating paths αi, βi from Example

7.6 as follows:

αi ↦ γ−1
Ci,Ci+1

, βi ↦ γ−1
Ci+1,Ci

where we read the indices modulo 4 and the chambers Ci are as in Figure 25

(R). As in Remark 5.21, this is to fully specify the large radius representation on

these paths – namely, it sends γ−1
Ci,Cj

to the window equivalence from Db(XCi) to

Db(XCj) using the window with λCi,Cj -weight −1.

Note that this presentation using both γ−1
Ci,Ci+1

and γ−1
Ci+1,Ci

as generators on

each wall is not minimal – instead, we could have just picked one of these. If we

had picked a different presentation with one such large radius generator for each

wall (chosen compatibly), we would only have to prove one additional relation.

However, as we can easily implement these four relations above, the difference is

cosmetic and so we stick with the presentation we know.

Proof. Under the relabelling above, Example 7.6 gives an equivalence φ̄ ∶ π1(U)/RF8 ≅
π1(C2 /{X = 1} ∪ {Y = 1}). The 4 relations in RF8 do not go near the coordinate

axes in C2, so they still hold in FIPSo(F8). As such, since U ′ ⊂ (C∗)2/{X = 1}∪{Y =
1} ≅ FIPSo(F8), inclusion gives a functor φ ∶ π1(U ′)/RF8 → π1(FIPSo(F8)) which

lifts the equivalence φ̄. By Proposition 7.2, we know that the kernels of the maps

π1(FIPSo(F8)) → π1(FIPS(F8)) and π1(U ′)/RF8 → π1(U)/RF8 are generated by

the same meridians. Hence φ is an equivalence. �

Because the intersections of the discriminant with the toric boundary are trans-

verse, there are no additional near large radius paths and we know (see Proposition

5.20) how to define our representation (as in Remark 9.28) on each near large radius

region. Then Remark 5.24 tells us that these glue together to automatically give a

representation ρ8 of π1(U ′) on the Triangle VGIT. In fact, we have:

Proposition 9.29. There is a representation ρ8 ∶ π1(FIPSo(F8)) → Cat1 on the

phases of the Triangle VGIT near F8.

Proof. By Lemma 9.27, we just need to check that the 4 relations in RF8 hold for

the Triangle VGIT. One checks that the following 4 collections of 4 line bundles

form magic windows for the Triangle VGIT (where the relevant walls are defined

by λC1,C4 = (0,1,1) ∈ L and λC1,C2 = (1,1,0) ∈ L):

(1) O,O(1,0,0),O(0,0,1),O(0,1,0)
(2) O,O(0,1,−1),O(0,0,−1),O(1,0,−1)
(3) O,O(−1,0,0),O(−1,1,0),O(−1,0,1)
(4) O,O(0,−1,1),O(1,−1,0),O(0,−1,0)

One then checks that the weights wλ in the i-th magic window agree with those

occurring in the i-th relation in RF8 . �
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Remark 9.30. There are easier ways to see the 4 relations RF8 on F8 hold than

by magic windows – here’s a more geometric reason. If we pick a single basepoint

corresponding to the phase XC1 , then loops around the two non-toric components

of the discriminant `1 and `2 generate the fundamental group of the complement

of U ′ in FIPSo(F8). Moreover, as this complement is homotopic to a 2-torus, there

is just one relation between these loops saying that they commute.

To see that this holds on the level of functors, we recall (see Remark 9.10) that

these generators, corresponding to window shifts on XC1 with respect to λC1,C4

and λC1,C2 respectively, can be thought of as twists TFi of a spherical functor

Fi for i = 1,2 supported on the toric divisors D5 and D2 in XC1 respectively. As

TF1○TF2○T −1
F1

= TTF1
○F2 , to prove commutativity it suffices to show that TF1○F2 = F2.

But as the image of F1 is supported on D5, TF1 only modifies any complex of sheaves

along this locus. Since D5 and D2 are disjoint in XC1 , the image of F2 is supported

away from D5 and so it is left alone by TF1 . Hence the functors commute.

9.2.4. Representation for the face F1. In this section, we observe that the VGIT on

F1 is (nearly) identical to the Pentagon VGIT in §7.3. In particular, the complement

of the discriminant in F(F1), which we call FIPS(F1), is the FIPS of the Pentagon

VGIT. We then construct a representation ρ1 of π1(FIPSo(F1)) on the phases of

the Triangle VGIT, which we have basically already done in Theorem 7.27.

The polyhedral subdivision corresponding to the face F1 is shown in the centre

of Figure 26. This makes it clear that the phases of the Triangle VGIT on F1

correspond to triangulations of the quadrilateral P (shaded grey) and hence the

secondary stack F(F1) of the VGIT on F1 (see Remark 3.30) is the secondary stack

of the VGIT on P . But the VGIT on P is exactly the Pentagon VGIT from §7.3

and hence the phases of the Pentagon VGIT are open subsets of the phases of

the Triangle VGIT near F1. Moreover, by Theorem 3.33, since the discriminant

of the VGIT associated to the right hand triangle in the polyhedral subdivision in

the centre of Figure 26 is trivial, the discriminant for the face VGIT equals the

discriminant for the Pentagon VGIT. Hence FIPS(F1) is the FIPS of the Pentagon

VGIT.

We now want to construct the representation ρ1 on the phases of the Tri-

angle VGIT. Recall that in Proposition 7.25 we constructed an equivalence φ̄ ∶
π1(U)/RF1 ≅ π1(FIPS(F1)) where U was a particular choice of large radius region

inside FIPS(F1) and RF1 consisted of 4 explicit relations. Now we check what hap-

pens to this presentation once we delete the remaining toric divisor in FIPS(F8).

Lemma 9.31. If we let U ′ ∶= U ∩ FIPSo(F1), π1(FIPSo(F1)) ≅ π1(U ′)/RF1 .

Proof. We note that inclusion induces a functor φ ∶ π1(U ′)/RF1 → π1(FIPSo(F1))
as the relations in RF1 do not meet the toric boundary. We note that φ lifts the

equivalence φ̄. By Proposition 7.2, π1(FIPS(F1)) and π1(U)/RF1 are quotients of

π1(FIPSo(F1)) and π1(U ′)/RF1 respectively by the toric loops α
(−1,−1)
Ci

for i = 4,5

in both cases. Therefore the functor φ must be an equivalence. �
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pC3

pC2

P

Figure 26. The secondary polytope of the VGIT on the face F1,
which is also the secondary polytope of the Pentagon VGIT

We can now construct the representation ρ1:

Proposition 9.32. The large radius representation ρ of π1(U ′) acting on the

phases of the Triangle VGIT near F1 gives the representation ρ1 on π1(FIPSo(F1)).

Proof. By Lemma 9.31, we just have to prove that ρ satisfies the additional 4

relations in RF1 . One checks explicitly that the following 4 collections of 4 line

bundles are indeed magic windows for the Triangle VGIT (where the relevant walls

are defined by λ = (0,1,0), (0,1,1), (0,1,−1), (0,0,1) ∈ L):

(1) O,O(1,0,0),O(0,1,0),O(0,0,1)
(2) O,O(−1,0,0),O(0,−1,0),O(0,0,−1)
(3) O,O(0,1,0),O(0,1,−1),O(−1,1,0)
(4) O,O(0,0,−1),O(0,1,−1),O(1,0,−1)

Moreover, one can check that the weights wλ in the i-th magic window agrees with

those occurring in the i-th relation in RF1 . �

Remark 9.33. Recall that the phases of the Pentagon VGIT are open subsets within

the phases of the Triangle VGIT on F1. Then the 4 magic windows used in the

proof above to implement the relations in RF1 on the Triangle VGIT restrict to the

Pentagon VGIT to give the magic windows we used to construct our representation

for the Pentagon VGIT in Theorem 7.27.

Remark 9.34. Instead of picking magic windows on the Triangle VGIT to con-

struct the representation ρ1, we could just observe that the representation of

π1(FIPSo(F1)) on the phases of the Pentagon VGIT (from Theorem 7.27) extends

to the phases of the Triangle VGIT. This is because the phases in the Pentagon

are just the complement of a fixed divisor in the phases in the Triangle and so we

can set ρ1 to be the identity on complexes supported on this divisor. The reason

that this defines a valid extension is that ρ1 is the identity in the toric open subset
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of the Pentagon’s phases near this divisor. This is because the generators of the

fundamental group all correspond to twists about spherical functors whose image

is concentrated on the flopping loci and hence the twists are the identity away from

this locus.

9.2.5. Fundamental groupoid representation. In the previous subsections we have

constructed representations ρ1 of π1(FIPSo(F1)) and ρ8 of π1(FIPSo(F8)) on the

phases of the Triangle VGIT. Up to the S3-symmetry, these are the only possibilities

and so it follows that we have constructed ρi on π1(FIPSo(Fi)) for all i in D.

Our aim in this section is to follow the strategy outlined at the start of §9.2 to

piece all these representations together compatibly to construct a representation of

π1(FIPSo).

Theorem 9.35. π1(FIPS) acts on the phases of the Triangle VGIT in such a way

that the representation on the phases near a divisor D′
i in D agrees with ρi.

Given the work of the previous sections, the proof largely boils down to checking

that the representations ρi and ρj agree on the paths in VWij .

Remark 9.36. Here we remark briefly on basepoints. The construction of the regions

Vβi and VWij already involves choosing certain basepoints (in the positive real torus)

in all of the regions VCijk which they intersect. Thus we end up with multiple

basepoints in each of these regions but, thanks to Remark 5.16, we can canonically

get rid of all but one of them to leave one basepoint pijk in each region VCijk near

D. Our fundamental groupoids in this theorem will always be based at the set

{pijk} and so we drop it from the notation.

Proof. First observe that, by Proposition 7.2, it suffices to construct the representa-

tion for π1(FIPSo). By Lemmas 9.14 and 9.18, π1(FIPSo) ≅ π1(Vδ) for δ sufficiently

small. As Vδ is covered by the near large radius regions described in §9.2.2, the

(groupoid) van-Kampen theorem (see [10]) tells us that π1(Vδ) is just the funda-

mental groupoids of these regions glued together along intersections. Moreover, we

know how to define a representation on the regions VCijk and VWij , since we are in

the large radius situation described in §5.4.

Next we note that the representation ρi of π1(FIPSo(Fi)) naturally extends to

a representation of π1(Vβi). This is because the fibration structure on Vβi (see Re-

mark 5.17) presents π1(Vβi) as π1(π−1
βi

(δ)) ⋊ ⟨αβi⟩. By Lemma 9.20, π1(π−1
βi

(δ)) ≅
π1(FIPSo(Fi)). As the discriminant meets all the large radius curves Z(Wij) in D

transversely, the monodromy on π−1
βi

(δ) ∩ VWij is trivial. By the presentations of

π1(FIPSo(Fi)) in §9.2.3 and §9.2.4, these regions generate π1(π−1
βi

(δ)) and so the

monodromy acts trivially on this groupoid. As such, π1(Vβi) ≅ π1(FIPSo(Fi)) ×
⟨αβi⟩. Defining ρi(αβi) in the usual way as tensoring by the corresponding line bun-

dle, we observe (as in the usual large radius representation – see Proposition 5.20)

that this commutes with all the functors in the representation ρi on π1(FIPSo(Fi))
and hence gives a representation of π1(Vβi).
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Recall (see Remark 5.21) that the representation of π1(VWij) was not completely

canonical because we had to choose an integer to define our windows. Here we fix

this ambiguity by declaring that it agrees with the representation ρi in the region

VWij ∩Vβi , where we note that the presentation of this large radius groupoid coming

from §9.2.3 and §9.2.4 agrees with the presentation in Remark 5.15.

As such, we have defined the representation on all pieces of the cover of Vδ and so

we only need to check the gluing relations. But, by the careful construction of our

cover (see Lemma 9.17), these gluing relations are easy to understand. First of all,

by Remark 5.24, we know that we can glue together the large radius representations

from Proposition 5.20 of the regions VCijk and VWij . So we are just left to check

how the representation ρi glues. Since Vβi ∩ Vβj = ∅, we just have to check that ρi

glues along the regions VWij and VCijk .

By Lemma 9.17, Vβi ∩ VWij is a deformation retract of VWij . Hence the gluing

relations on this intersection say that ρi acts canonically on toric loops and in a

way which agrees with ρj on large radius paths. Certainly, by the way we extended

ρi to π1(Vβi) above, this is true for the toric loop αβi . For the remaining generators

of π1(VWij) in our presentation, we need to consider what these get identified with

under the homotopy equivalence π−1
βi

(δ) ≃ FIPSo(Fi) in Lemma 9.20. Recall from

Remark 9.23 that toric loops αβ in π−1
βi

(δ) get identified with toric loops αβ̄ in

FIPSo(Fi) where β̄ ∶= β ∈ L∨/βi. So ρi acts canonically on them.

For large radius paths in VWij , recall from Remark 9.23 that the homotopy

equivalence π−1
βi

(δ) ≃ FIPSo(Fi) sends large radius paths living in a βWij -orbit

inside VWij to large radius paths in a β̄Wij -orbit inside Eβi ∩ FIPSo(Fi), where

β̄Wij ∶= βWij ∈ L∨/βi. We can check that β̄Wij agrees with how we have defined

the corresponding large radius region in the presentations of π1(FIPSo(Fi)) from

§9.2.3 and §9.2.4. As such, ρi gives a window equivalence on the large radius

paths in VWij . Fixing a particular large radius path in Z(Wij) and pushing it

off into either FIPSo(Fi) or FIPSo(Fj), we check that the corresponding window

equivalence assigned by ρi and ρj agree by chasing around their descriptions from

§9.2.3 and §9.2.4. Therefore we are done with this gluing relation.

Finally, Lemma 9.17 says that Vβi ∩ VCijk is a deformation retract of VCijk and

so the gluing relations on this intersection say that ρi acts in the canonical way on

toric loops. We have already checked this above and so are done.

�

9.3. The covering strategy. When the FIPS has a complicated topology, one

approach to simplify the description of the fundamental group is to take an ap-

propriate finite cover of the FIPS. In the An-singularity case [18], Donovan and

Segal show that there is a tower of covers of the FIPS of the An surface singularity

which are FIPS for certain higher-dimensional VGITs containing the An surface

singularity. In this section, our main aim (see Proposition 9.46) is to describe how

we can construct an analogous cover for the Triangle VGIT. We then sketch how
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the techniques in [18] should be able to reconstruct a representation on the phases

of the Triangle VGIT, as in Theorem 9.35.

We first need to find the analogous higher-dimensional VGIT for the Triangle

VGIT. We shall refer to the Triangle VGIT as the original VGIT and and the new

VGIT (whose phases are of higher dimension) as the “unsliced” VGIT. We want

the unsliced VGIT to be quasi-symmetric so that we have a guaranteed large radius

representation of π1(FIPS), as in Corollary 2.8.

Remark 9.37. We should say immediately that it seems unlikely that in general we

can find a quasi-symmetric unsliced VGIT whose FIPS covers the original FIPS.

We return to this in Remark 9.41.

Having said that, the FIPS is analogous to the stringy Kähler moduli space

which should roughly be (c.f. [7]) the quotient of the space of stability condi-

tions by autoequivalences. From this perspective, there seems to be a hyperplane

complement lurking in that, if we rewrite the space of stability conditions modulo

auto-equivalence as the space of (numerical) stability functions modulo the resid-

ual symmetries of cohomology, then the space of stability functions is roughly the

hyperplane complement in K0(X)C given by deleting central charges Z such that

Z(δ) = 0 for some stable object δ.

In the An singularity case [18], Donovan and Segal find the unsliced VGIT by

describing some of the phases of their original VGIT as a moduli space of repre-

sentations (with all dimensions 1) of a quiver Q with (toric) relations I. Note that

these moduli spaces do indeed describe a toric VGIT. Crucially, the quiver Q is

self-dual – that is, for every arrow between two vertices, there is one in the opposite

direction – and so the associated toric VGIT is quasi-symmetric, as desired. In fact,

the TL-representation being quasi-symmetric is the same thing as the quiver being

self-dual.

Remark 9.38. The moduli spaces of representations depend on a stability parameter

θ ∈ L∨R and we denote the moduli space of θ-semistable representations (with all

dimensions 1) of (Q, I) by Mθ(Q, I).

Then Donovan and Segal define the unsliced VGIT to be the representations of

the free quiver Q and imposing the relations in I is “slicing”. As such, the phases

of the unsliced VGIT correspond to Mθ(Q) for different values of θ.

Starting from the geometry of the VGIT, they construct such a quiver description

by using the McKay correspondence for the associated quotient singularity. Explic-

itly, the basic case is the VGIT associated to the An surface singularity C2 /Zn+1.

Here the quiver description is automatic and explicit by the 2-dimensional McKay

correspondence. Namely, the McKay quiver is the Ãn quiver with its usual com-

muting relations.

Remark 9.39. In the context of the McKay correspondence, representations of the

McKay quiver (with relations) with all dimensions 1 are called G-constellations.
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Note that the Ãn quiver is indeed self-dual, as claimed earlier and so we know, by

Theorem 8.8, that the FIPS of the unsliced VGIT is the complement of some hyper-

planes. In fact, the hyperplane arrangement turns out to be the An-configuration

of hyperplanes in Rn.

Remark 9.40. We can also view this process of constructing a quiver description

from the geometry as taking a non-commutative crepant resolution (NCCR) of

the associated toric singularity. This allows us to extend the strategy above to

non-quotient singularities where there is no McKay correspondence.

In the An case, the quotient singularity has a canonical NCCR coming from

the stacky resolution [C2 /Zn+1]. More generally, for any toric orbifold singularity

Cn /G (for G ⊂ SLn(C) abelian), we can take the NCCR given by ⊕iO(χi) where

χi are the irreducible representations of G. Computing the endomorphism algebra

gives back the McKay quiver of this representation of G with relations given by

commutators. However, there is no reason that this quiver is self-dual.

Remark 9.41. If we consider toric VGITs arising as moduli spaces of representations

of a quiver (as above), it seems unlikely that we can in general always find an

equivalent description in terms of a self-dual quiver. This supports Remark 9.37

and explains why we are more interested in the Lefschetz strategy in §9.2.

For example, whilst we have a quiver description for the Octahedron VGIT (see

Remark 5.18), it is not self-dual and we don’t know whether such a quiver exists.

Despite Remark 9.41, in individual cases we can try to find such a self-dual

quiver description by taking NCCRs of the corresponding toric singularity.

We now explain how this works for the Triangle VGIT, where we recall (see

§9.1.1) that the corresponding singularity is the orbifold singularity C3 /G (where

G = Z⊕2
2 ). Because this is an orbifold singularity, we can use the 3-dimensional

McKay correspondence (or equivalently the tautological NCCR in Remark 9.40).

Then the McKay quiver Q has four vertices and is shown in Figure 27. We note

that it is self-dual and so take the unsliced VGIT to be given by its (free) rep-

resentations. The relations I are the commutators, so are given schematically by

xy = yx, xz = zx and yz = zy, and the Triangle VGIT corresponds to moduli spaces

of G-constellations.

Remark 9.42. In dimensions 4 and above, the moduli space of G-constellations is

not necessarily a projective crepant resolution of Cn /G. On the other hand, the

geometric phases of any Calabi–Yau toric VGIT resolving this singularity would be.

As such, in these cases, we would have to abandon the McKay correspondence and

resort to trying different NCCRs, as in Remark 9.40. Happily in the 3-dimensional

abelian case, we know (see [12]) that every projective crepant resolution of the

quotient singularity C3 /G is a moduli space of G-constellations. In particular, all

the geometric phases in the Triangle VGIT are of this form since our resolutions

are Calabi–Yau too and hence crepant.
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Figure 27. McKay quiver of C3 /G

Now that we have constructed the unsliced VGIT, we want to construct a Galois

cover FIPS0 → FIPS1 where FIPS0 is the FIPS of the unsliced VGIT and FIPS1

is the FIPS of the Triangle VGIT. In the An-case, Donovan and Segal do this

by finding a G-action on the secondary fan of the unsliced VGIT such that G acts

freely on the chambers and such G-orbits correspond to phases of the unsliced VGIT

which slice to give the same phase of the original VGIT – that is, under imposing

the toric relations. So we shall look for a similar G-action on the secondary fan of

the unsliced VGIT. We start with the toric data for the unsliced VGIT:

Z3 (Q
′)∨ÐÐÐ→ Z12 A′

Ð→ Z9

where

(Q′)∨ =

x1

x′1

y1

y′1

z1

z′1

x2

x′2

y2

y′2

z2

z′2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1

0 0 −1

1 0 0

−1 0 0

0 1 0

0 −1 0

−1 1 0

1 −1 0

0 1 −1

0 −1 1

−1 0 1

1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,A′ =

x1 x′1 y1 y′1 z1 z′1 x2 x′2 y2 y′2 z2 z′2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 1 0

Following Remark 3.15, we can therefore picture the secondary fan as in Figure

28 (L) (we use coordinates X +Z,X +Y,Y +Z instead of the standard coordinates

X,Y,Z here to make the symmetry clearer). The secondary polytope is therefore a

“chamfered cube” (also known as a 4-truncated rhombic dodecahedron), which is

shown in Figure 28 (R). This polyhedron has 32 vertices and 18 faces (12 hexagons
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and 6 squares). As such, the unsliced VGIT has 32 phases. Note that we don’t con-

sider the stacky secondary fan here since we’ll soon see that all the toric boundary

is in the discriminant and so we can just work inside TL∨ .

In our case, slicing the phases of the unsliced VGIT gives the 4 geometric phases

of the Triangle VGIT.

Remark 9.43. Note that we don’t get all the phases of the Triangle VGIT by slicing.

This is because all the phases of the unsliced VGIT are geometric – that is, have

no orbifold locus – and, hence, so are all the sliced phases.

Now any G which acts freely on the chambers to give these 4 phases must have

order 8. In fact, by computing which fans slice to a given fan of the Triangle VGIT,

we can compute what the G-orbits of chambers in L∨R should look like. So if we

take G = Z⊕3
2 to be the group generated by “reflections” (not with the Euclidean

metric) in the planes Y + Z = 0,X + Z = 0 and X + Y = 0 respectively, then this

G preserves the secondary fan and has the correct G-orbits. For the secondary fan

in Figure 28 (L), this amounts to actual reflections in the coordinate hyperplanes.

This quotienting folds up the orthants in the secondary fan for the unsliced VGIT

to give the secondary fan for the Triangle VGIT. Dually, with enough imagination,

we can see how the chamfered cube folds up to give the associahedron. As such,

this G seems like a sensible candidate.

Now we’ll check that this G-action induces a G-action on FIPS0. We start by

understanding FIPS0. From Theorem 8.8, the log-discriminant is a hyperplane

arrangement whose log-hyperplanes correspond to hyperplanes in L∨R spanned by

the weights lying on them. Specifically, for each such hyperplane with normal lΓ,

the corresponding log-hyperplane takes the form ∇Γ = {xlΓ = cΓ} (see §8.1 for

details). We can check that the hyperplanes in L∨R of this form are precisely:

X = 0, Y = 0, Z = 0,X + Y = 0,X +Z = 0, Y +Z = 0,X + Y +Z = 0

To calculate ∇Γ, we need to compute cΓ for each of these. Since our TL-representation

is self-dual, by Remark 8.7, all the cΓ = ±1. Calculating the correct signs and using

Remark 8.9 to observe that all toric divisors are in the discriminant, we see that:

(7) FIPS0 = (C∗)3/{α = −1, β = −1, γ = −1, αβ = 1, βγ = 1, αγ = 1, αβγ = −1}

where

α = x
′
2y1z

′
2

x2y′1z2
, β = x2y2z1

x′2y
′
2z

′
1

, γ = x1y
′
2z2

x′1y2z′2
Then the G-action on the secondary fan described above induces the following

action on (C∗)3, which can be written explicitly in terms of generators σ1, σ2, σ3

as:

σ1 ∶ (α,β, γ)↦ (αβγ, 1

γ
,

1

β
), σ2 ∶ (α,β, γ)↦ ( 1

γ
,αβγ,

1

α
), σ3 ∶ (α,β, γ)↦ ( 1

β
,

1

α
,αβγ)

1Figure By Watchduck (a.k.a. Tilman Piesk) - Own work, CC BY 4.0
https://commons.wikimedia.org/w/index.php?curid=66347020
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Figure 28. The secondary fan for the unsliced VGIT (L) and its
secondary polytope, the “chamfered cube” (R) 1

We can check that this G-action preserves the discriminant locus and so acts on

FIPS0.

Now that we have our candidate G-action, we want to show that [FIPS0/G] ≅
FIPS1. One guess, following [31], as to how to define such a cover Φ ∶ FIPS0 →
FIPS1 is as follows. Suppose that the original VGIT is described by toric data

L → Zn AÐ→ N and the unsliced VGIT is described by L′ → Zn
′ A′
Ð→ N ′. Since the

phases of the original VGIT embed torically into the phases of the unsliced VGIT,

we also have an embedding i ∶ N ↪ N ′ with the property that the rays of the

original VGIT can be written as positive combinations of the rays in N ′.

To construct our candidate for the covering map, we first construct a (possibly

non-linear) map Φ ∶ (Cn
′
)∨ → (Cn)∨. Let αj be a way of writing i(ωj) as a non-

negative integral combination of the rays given by A′. As A′ lives in a height one

affine hyperplane in N ′
R, we note that there are only finitely many such αj . We

view αj as the vector (αkj ) ∈ Nn
′

which sits in the commuting diagram:

Zn N

Zn
′

N ′

ej↦αj

A
ej↦ωj

i

A′

Thus α defines a monomial function (x′)αj ∶=∏n′
k=1(x′k)α

k
j on (Cn

′
)∨ and we can

define Φ(x′)(ej) ∶= Φj(x′) = Σαj(x′)αj . By dualising the diagram above, we see

that Φ intertwines the TM and TM ′ actions along the map i∨ and so induces a map

[(Cn
′
)∨/TM ′]→ [(Cn)∨/TM ]. This is therefore a potential candidate to give a map

between the two FIPS.
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Remark 9.44. Note that we could put different coefficients in front of each monomial

in Φ and it would still intertwine the actions. In fact, we’ll use this flexibility for

the Triangle VGIT – see Remark 9.45.

Unfortunately, in general, Φ doesn’t respect the discriminant. However we’ll

now show (see Proposition 9.46) that it does for the Triangle VGIT and that, in

fact, it is a G-cover. So first we construct the associated map Φ ∶ (C12)∨ → (C6)∨

coming from imposing the commuting relations on the quiver Q. In total, there

are 12 commuting relations (there are 4 vertices of Q and 3 pairs of commuting

coordinates). But on the torus (C∗)12, 6 of these are redundant and, as such,

the geometric phases of the Triangle VGIT can be described as the closure in the

unsliced VGIT of the remaining 6 toric relations. These are encoded in a map

R ∶ Z9 → Z6 whose kernel gives the embedding i ∶ N = Z3 ↪ N ′ = Z9. When R is

pre-composed with A′, it gives the matrix

R ○A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 −1 0 0 0 −1 0 1 0 0 0

0 0 1 0 −1 0 0 0 0 −1 1 0

0 1 1 0 0 0 0 −1 −1 0 0 0

0 1 0 0 1 0 −1 0 0 0 0 −1

0 −1 0 0 0 1 1 0 0 0 −1 0

0 0 0 1 1 0 0 0 −1 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and we can compute that i ○A ∶ Z6 → Z9 is given by:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 1 0 1 0 0

0 1 2 0 1 0

0 0 0 1 1 2

2 1 0 1 0 0

0 1 2 0 1 0

0 0 0 1 1 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

From here, one can check that i(ωj) are the only rays in N ′ which occur on the

slice given by i. Comparing this matrix and A′, one can also see that there is a

unique way to write i(ω1), i(ω3) and i(ω6) in terms of the rays in A′ and precisely

two ways to write each of the remaining three rays. This means that

Φ(x) = (Φ1(x),Φ2(x),Φ3(x),Φ4(x),Φ5(x),Φ6(x))

where

Φ1(x) = −x1x
′
1x2x

′
2,Φ2(x) = x1y1x

′
2y

′
2 + x′1y′1x2y2,Φ3(x) = −y1y

′
1y2y

′
2

Φ4(x) = x1z1x2z2 + x′1z′1x′2z′2,Φ5(x) = y1y2z1z
′
2 + y′1y′2z′1z2,Φ6(x) = −z1z

′
1z2z

′
2
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Remark 9.45. Actually, this Φ isn’t exactly as we described before because we

have chosen different coefficients for the monomials. This is needed for the next

proposition to hold and shows that, in general, the coefficients appearing in Φ need

to be chosen carefully if it’s to have any hope of being a cover.

Now that we have constructed Φ for the Triangle, we can check:

Proposition 9.46. Φ induces a map FIPS0 → FIPS1 which is a G-cover.

Proof. To show that we get a map between the FIPS, we claim that the pre-image

under Φ of the discriminant of the Triangle VGIT is the discriminant of the unsliced

VGIT. Let’s start with the coordinate hyperplanes corresponding to vertices of our

polytopes. By inspecting A′, we see that every ray is a vertex whereas in the

triangle ∆1 only the first, third and sixth ray ωi are vertices (see Figure 23). As

Φ1,Φ3,Φ6 are monomials which together involve all coordinates, the pre-image of

the 3 coordinate hyperplanes {a1 = 0},{a3 = 0},{a6 = 0} in C6 is the union of all

coordinate hyperplanes in C12.

We now move on to the pre-image of ∇pr, which we recall has defining equation:

∆pr ∶= det

⎛
⎜⎜⎜
⎝

a1 a2/2 a4/2
a2/2 a3 a5/2
a4/2 a5/2 a6

⎞
⎟⎟⎟
⎠

We observe that:

Φ∗(∆pr) = 1/4(x1y1z1+x′1y′1z′1)(x′2y1z
′
2+x2y

′
1z2)(x2y2z1+x′2y′2z′1)(x1y

′
2z2+x′1y2z

′
2)

Recalling that FIPS0 ⊂ (C∗)12/TM ′ ≅ (C∗)3
α,β,γ , we may write Φ∗(∆pr) in these

coordinates as (αβγ + 1)(α + 1)(β + 1)(γ + 1) up to units. Comparing with the

description of FIPS0 in (7) above, we see that Φ−1(∇pr) is a union of 4 components

of the discriminant.

Finally, the 3 components of the discriminant ∇i with equations a2
2 −4a1a3, a2

4 −
4a1a6 and a2

5 −4a3a6 pullback under Φ to give (x1y1x
′
2y

′
2 −x′1y′1x2y2)2, (x1z1x2z2 −

x′1z
′
1x

′
2z

′
2)2 and (y1y2z1z

′
2 − y′1y′2z′1z2)2 respectively – that is, (αγ − 1)2,(βγ − 1)2

and (αβ − 1)2. By the description of FIPS0 in (7) again, we see that each of these

pre-images is a component of the discriminant. As we have covered all components

in the discriminant {EA0 = 0} of the unsliced VGIT, we conclude that Φ sends

C12 /{EA0 = 0} to C6 /{EA1 = 0} and hence descends to give a map Φ ∶ FIPS0 →
FIPS1.

To prove the covering statement, we shall show that the pullback Φ̂ ∶ X →
C3
uvw /{EA1 = 0} of Φ under the Z⊕2

2 -quotient map C3
uvw /{EA1 = 0} → FIPS1 (see

§9.1.3) is a G-cover, noting that X is a scheme as Φ is representable. We shall do

this by showing that the non-empty fibres of Φ̂ are G-orbits. This implies that Φ̂

is an 8:1 cover of its image. Hence its image must be 3-dimensional and, since Φ̂ is

proper, Φ̂ is surjective.
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To prove that Φ̂ has fibres a G-orbit over its image, we need only show that Φ

has fibres a G-orbit over its image. The fibre of Φ over x ∈ FIPS1 ⊂ [C3 /Z⊕2
2 ] is

canonically isomorphic to Aut(x) × Φ̄−1(π(x)) where Φ̄ = π ○Φ and

π ∶ [C3 /Z⊕2
2 ]→ C3 /Z⊕2

2 = {xyz = u2} ⊂ C4
xyzu

is the projection to the coarse moduli space. Recall that x has non-trivial stabiliser

only along the 3 coordinate axes – it has stabiliser ≅ Z2 for all such points apart

from the origin and, at the origin, the stabiliser is Z⊕2
2 .

We may write Φ̄ in coordinates α,β, γ as:

Φ̄(α,β, γ) = ((αγ + 1)2

αγ
,
(βγ + 1)2

βγ
,
(αβ + 1)2

αβ
,−(αγ + 1)(βγ + 1)(αβ + 1)

αβγ
)

As such, we can check that Φ̄ is G-invariant by using the explicit G-action above

so we need only check that the fibres consist of a single G-orbit.

Suppose Φ̄(α,β, γ) = Φ̄(α′, β′, γ′). Note that (αγ+1)2
αγ

= (α
′γ′+1)2
α′γ′ precisely when

αγ = α′γ′ or 1
α′γ′ and similarly for the y and z terms. For fixed αγ, βγ and αβ

there are precisely 2 choices of α, β, γ (related by −Id on FIPS0) with these values

for the products. Moreover, these choices of α,β and γ have the same u-component

of Φ̄ precisely when this component is 0.

As such, if Φ̄(α′, β′, γ′) has non-zero u-component, then the fibre containing

(α′, β′, γ′) has 8 points, related by transformations sending α′γ′ ↦ 1
α′γ′ etc. Com-

paring with σi, we see that this is a G-orbit.

If Φ̄(α′, β′, γ′) has zero u-component, then it also has one of its other components

equal to 0. One checks explicitly that, away from the x, y and z-axis, the 8 points

in the fibre form a G-orbit. Similarly on these axes (but not at the origin) one

checks that the 4 points in the fibre form a G-orbit and the 2 points over the origin

also form a G-orbit.

�

So, exactly as in [18], we have constructed a Galois cover of the FIPS of the

Triangle VGIT which is itself the FIPS of a quasi-symmetric VGIT. Having con-

structed a representation on the phases of the Triangle VGIT in §9.2, we now just

sketch how our Galois cover should lead again to such a representation. We first

observe that in the quasi-symmetric case we automatically have a large radius rep-

resentation ρ on the phases of the unsliced VGIT from Corollary 2.8. To construct

the representation on the phases of the Triangle VGIT, we want to “restrict” this

representation to the slices.

Suppose we consider the two phases X± of the unsliced VGIT on either side of

a wall, whose slices Y± are phases of the Triangle VGIT. The common open subset

(which includes the open torus TN ′) gives a birational equivalence between the two
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and we get a diagram as follows:

X− X+

Y− Y+

Then ρ assigns a window equivalence φ0 ∶Db(X−)→Db(X+) to the corresponding

large radius path. In the An-case (see [18], Proposition 5.17), this restricts to

give an equivalence φ0∣Y ∶ Db(Y−) → Db(Y+) between the sliced phases. If this

restriction property holds for the Triangle VGIT, then as π1(FIPS0) is generated

by such large radius paths and any relations between the functors φ0 on the unsliced

VGIT must continue to hold between the functors φ0∣Y on the Triangle VGIT, we

get a representation ρ∣Y of π1(FIPS0) on the phases of the Triangle VGIT.

Remark 9.47. This restriction property for the Triangle VGIT does not follow

directly from the same argument used for the An-examples in [18]. The difference is

that the toric relations there were actual (invariant) functions whereas our relations

are not – that is, neither of the monomials in any of our relations correspond to loops

in the quiver. Geometrically, this corresponds to the fact that in the An-case we only

slice away non-compact directions whereas for the Triangle we also slice away some

compact directions. Note that the restriction property can be reinterpreted as a

purely geometric statement about how the birational roof between two neighbouring

phases of the unsliced VGIT behaves under slicing.

We also fully expect that the restrictions of these equivalences recovers the rep-

resentation from Theorem 9.35. For this, we would have to check that window

equivalences between neighbouring phases of the unsliced VGIT in distinct G-orbits

restricted to window equivalences between phases of the Triangle VGIT and that

window equivalences between neighbouring phases of the unsliced VGIT in the same

G-orbit restricted to family spherical twists arising from a trivial family of P1s over

C with normal bundle O(−2), as in the description of our representation in Remark

9.10.

Given the representation ρ∣Y of π1(FIPS0) on the phases of the Triangle VGIT,

it is largely formal to construct the representation of π1(FIPS1). Namely, as the

G-orbits of chambers correspond to identical sliced phases, we have a canonical

G-representation on the sliced phases by the identity.

Moreover, the large radius representation ρ∣Y is G-equivariant. For this, we just

need to check that the equivalences (φC1,C2

0 )∣Y and (φg(C1),g(C2)
0 )∣Y on the sliced

phases agree for any g ∈ G. This holds because there is a G-action on N ′ = Z9

which preserves the set of rays of the unsliced VGIT and is compatible with our

G-action on L∨ in the sense that two chambers in L∨R differ by g ∈ G precisely when

the corresponding fans in N ′
R differ by permuting the rays according to g. This

compatibility means that everything about the wall crossing from C1 to C2 (such

as the unstable loci on each side, the fixed locus etc.) agrees under the action of g
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on the corresponding phases with the wall crossing from g(C1) to g(C2). As such,

φC1,C2

0 and φ
g(C1),g(C2)
0 agree up to the action of g and the same thing continues to

hold on the sliced phases (where the G-action is trivial). To see that we have such

a G-action on N ′, observe that the G-action on the secondary fan preserves the set

of weights of the unsliced VGIT. This follows immediately from Figure 28 (L) since

the rays in the secondary fan which are not weights of the unsliced VGIT are the

6 rays lying on the coordinate axes in that figure (these correspond to the 6 square

faces of the chamfered cube) and these are obviously permuted by reflection in the

coordinate hyperplanes. Then this G-action on L∨ lifts to a G-action on (Zn)∨

which records the permutation of the weights. Dually, this induces the desired

G-action on N ′ which preserves the set of rays.

Since ρ∣Y is G-equivariant, we can combine it with the trivial G-action to get a

representation of π1(FIPS0)⋊G where this is the semidirect product of a group with

a groupoid (see [10], §11 for details). But it is known (ibid.) that π1(FIPS0) ⋊G ≅
π1([FIPS0/G]). Since FIPS1 ≅ [FIPS0/G], it follows that we have constructed a

representation of π1(FIPS1), as desired.

Remark 9.48. This covering perspective on the Triangle VGIT has a lot of sim-

ilarities with recent work of Donovan and Wemyss [19, 36]. In their setting, we

would start with the 3-fold cD4 singularity Y ∶= C3 /Z⊕2
2 ≅ {xyz = u2} ⊂ C4

xyzu and

a geometric crepant resolution π ∶ X → Y , which for us is given by a geometric

phase of the Triangle VGIT. Here there is a natural such choice given by the max-

imally symmetric phase X0, which can be described as HilbG(C3). This choice of

a phase can be interpreted as an NCCR on Y by pushing down (by π) the bundle

of sections of the universal subscheme on X0. This can be alternatively described

by choosing the affine orbifold phase π′ ∶ [C3 /G] → Y and the associated NCCR

⊕χ∈X∗(G) π
′
∗O(χ) on Y (see Remark 9.40). Either way, we end up with the NCCR

given by the McKay quiver in Figure 27.

To run the machinery in [19], we would then mutate this NCCR and use moduli

tracking to compute the real hyperplane arrangement H. This gives exactly the

walls of the secondary fan for FIPS0. In [36], §7.2 Example 7.6, Wemyss computes

that there are 4 minimal models, obtained from X0 by individually flopping the 3

exceptional curves. It follows that all other mutated algebras are just isomorphic

to these and one can check that the chambers corresponding to the same algebra

are precisely the G-orbits we have chosen above.

In [19], Donovan and Wemyss construct an action of the Deligne groupoid GH of

the hyperplane arrangement H on the models of certain isolated 3-fold singularities

by applying flop (or mutation) functors. However our 3-fold singularity is non-

isolated which means that their techniques do not apply directly. However they

do construct certain autoequivalences, called “J-twists”, even when there are no

actual flop functors – that is, between phases in the same G-orbit. In the Triangle

VGIT, these “J-twists” should just be the family spherical twists we saw arising



120

in Remark 9.47. So in their language, our action combines J-twists with the usual

flop functors to construct a representation of GH.

10. Near large radius in higher-dimensions

We finish by discussing a conjectural way to describe the representation on paths

near a large radius curve Z(W ) in any dimension, which is supposed to generalise

the representation ρW from the 2d case in Theorem 6.15. So suppose we are crossing

a wall W in the secondary fan from a chamber C1 to C2. Let λ ∶= λC1,C2 ∈ L be

the primitive normal (pointing towards C1) and let Zλ = [(Cn)λ/TL] and Z ′λ =
[(Cn)λ/(TL/λ)] be the λ-fixed locus. Then Z ′λ is itself a linear toric VGIT and

its weights are precisely those of the original VGIT lying in the hyperplane ⟨W ⟩
(where we view these weights as living inside ⟨W ⟩ ∩ L∨). We observe that W is

contained (as a full-dimensional subcone) in a unique cone of the secondary fan for

the VGIT on Zλ and Z ′λ (which lies in L∨R and ⟨W ⟩ respectively). We call the

corresponding quotients Zλ and Z ′
λ respectively.

Unlike in dimension 2, in general we can have many components of the discrim-

inant intersecting Z(W ). Recall from §3.1 that such components correspond to

faces Γ of ∆ and to such a face we have associated (see Definition 3.43) a Higgs

VGIT. As mentioned in §2, typically these VGITs are not Calabi–Yau.

Definition 10.1. A Higgs phase ZΓ associated to a face Γ of ∆ is any minimal

phase of the Higgs VGIT – that is, a phase whose canonical bundle is nef.

Remark 10.2. Following Remark 3.46, this definition actually makes sense when we

start with any linear toric VGIT, not necessarily a Calabi–Yau one.

Recall (see Proposition 5.20) that currently we have a representation ρW on

large radius paths. Moreover, by Remark 4.19, loops at large radius based at

the chamber C1 correspond under ρW to twists about a spherical functor Fw ∶
Db(Zλ)w →Db(XC1). Here, as we did in 2-dimensions, we focus on the case w = 0

when Db(Zλ)w = Db(Z ′
λ). For general w, we note that, having chosen βW of λ-

weight −1 to define our near large radius paths (see §5.2), ⊗O(−wβW ) gives an

equivalence between Db(Z ′
λ) and Db(Zλ)w.

Then, as described in Conjecture B, we would like to define our representation

on loops near the large radius curve Z(W ) around ∇Γ by twists about spherical

functors (see [3] for precise definitions) with source category Db(ZΓ). One source

(and for us the only source) of such functors is from SODs of Db(Z ′
λ) into “minimal”

pieces of the form Db(ZΓ).

Remark 10.3. In general, if we take a piece A of an SOD of the source category of

a spherical functor F , it is not true that F ∣A is spherical. However our spherical

functor F0 has the special property that its cotwist is (up to a shift) the Serre

functor on Db(Z ′
λ) and so (see [1], Proposition 1.1) F0∣A is, in fact, spherical.
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The SODs which we use are of a special form coming from the fact that Z ′
λ is a

phase in a linear toric VGIT. The main result of this section (Theorem 10.4) says

that SODs into minimal factors of the form Db(ZΓ) always exist and, moreover, the

number of pieces of the form Db(ZΓ) in any SOD coming from VGIT is an intrinsic

quantity. This is therefore a Jordan-Hölder type theorem for these SODs. As we

shall now see, it holds for a general linear toric VGIT. In §10.2, we will return to

Conjecture B and the representation on near large radius paths in the Calabi–Yau

case.

10.1. SODs from wall-crossings. Fix a wall W in the secondary fan of a toric

(not necessarily Calabi–Yau) VGIT with primitive normal λW ∈ L chosen so that

µλW ∶= ⟨λW ,−K⟩ ≥ 0, where −K = ∑i βi. We call the phase associated to the

chamber C (adjacent to W ) with ⟨λW ,C⟩ ≥ 0 X+, the other phase X− and the

quotient on the wall XW (this is intentionally ambiguous when µλW = 0). Finally

we let Z ′
λW

be the λW -fixed locus in XW (forgetting the trivial λW action). Then,

for any d ∈ Z, Theorem 4.21 gives full embeddings Φd ∶ Db(X−) → Db(X+) and

ij ∶ Db(Z ′
λW

) → Db(X+) for j = 1, . . . , µλW such that ⟨Im Φd, Im i1, . . . , Im iµ⟩ is an

SOD of Db(X+).
Now pick a path γ ∶ [0,1]→ L∨R starting at a chamber whose corresponding phase

X0 is minimal (this may be empty) and ending at a phase X1. This path should

avoid any codimension 2 cones in the secondary fan and, whenever it crosses a wall,

it does so in the direction from X− to X+. If we label the normals to the walls

Wi along γ by λi for i = 1, . . . , k, then Theorem 4.21 gives us full embeddings Φ ∶
Db(X0)→Db(X1) and ii,j ∶Db(Z ′

λi
)→Db(X1) for i = 1, . . . , k and j = 1, . . . , µλi .

Continuing inductively, if Z ′
λi

is not minimal for some i, then we can decompose

Db(Z ′
λi
) further so long as, for such i, we choose similar paths γi (in the hyperplane

⟨Wi⟩) for the VGITs on Z ′λi going from a minimal phase to the phase Z ′
λi

. The

choices of these paths is shown schematically in Figure 29. If we keep going, this

eventually terminates as each linear subspace in which these paths live has strictly

smaller dimension than the preceding one. Then the end result is an SOD of

Db(X1) whose pieces are Db(ZΓ) for various faces Γ, which are necessarily minimal

(see Definition 3.3) because we always take all the weights on the corresponding

subspace (see Lemma 3.47). This gives the first part of the following:

Theorem 10.4. Given a choice of paths as above, we get a number of full em-

beddings iΓ,j ∶ Db(ZΓ) → Db(X1) (for some collection of minimal faces Γ and

j = 1, . . . , nΓ) and an SOD of Db(X1) into these pieces. Moreover, the Γ which

occur and the number nΓ are independent of the particular choice of these paths.

Remark 10.5. It was shown in [28] that the Jordan-Hölder property doesn’t hold

in general for derived categories of smooth projective varieties, so this theorem is

really using the fact that X1 is a phase of a linear toric VGIT and that we are

choosing a particular class of SODs of Db(X1) which use this structure.
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X1

X0

γ

γ1

γ2

Figure 29. A choice of paths giving an SOD as in Theorem 10.4

We now turn to the proof of the second part of the theorem above. Suppose the

VGIT for X1 can be described as TL⟳ Cn and let its secondary fan in L∨R be Σ.

Pick any choice of paths γ, γ1, . . . , γi, . . . in L∨R as in the theorem. We shall prove

the theorem by induction on Rk(L∨), noting that when Rk(L∨) = 1 there is only

one choice of path and so we have nothing to prove. As such, we can assume that

the faces Γ and numbers nΓ for the SODs of Db(Z ′
λ) (and Db(Z ′

λ1,λ2
)) which occur

along γ do not, in fact, depend upon γ1, . . . , γi, . . . and we therefore forget about

these extra choices.

To prove Theorem 10.4 it suffices to show that the Γ and nΓ occurring at walls

along γ do not change whenever we go “the other way” around a codimension 2

cone in Σ for which this makes sense – in particular, γ has to go from a minimal

phase in the corresponding 2-dimensional face to a maximal one. This claim follows

since any two choices of paths γ are related by such moves. This observation will

ultimately allow us to reduce to the case when Rk(L∨) = 2.

So fix such a codimension 2 cone σ in Σ (corresponding to a 2-dimensional face

F of the secondary polytope) and consider the quotient map q ∶ L∨ → L∨σ where L∨σ

is the rank 2 quotient lattice L∨/⟨σ⟩ ∩ L∨. By Remark 3.30, the secondary fan for

the VGIT on F is pulled-back from the secondary fan (in (L∨σ)R) of the VGIT given

by TLσ acting on Xσ. Moreover, the canonical direction in Σ given by KX1 induces

a canonical direction in this secondary fan given by q(KX1). This is depicted in

Figure 30. From now on, we shall assume that X0 is the minimal phase in this face

and X1 the maximal one.

Remark 10.6. In general there is no single maximal or minimal phase as we have

assumed here. However, as there are no wall contributions between different choices

of maximal (or minimal) phases, we are free to choose them as we wish.

In the notation from Figure 30, consider the two SODs of Db(X1) coming from

the paths labelled γ1 and γ2, where we have labelled each wall with the correspond-

ing contribution to the derived categories as we move along γi. The categorical

contributions on wall W come with multiplicity µλW = ⟨λW ,−q(KX1)⟩. Then, to

prove the theorem, it is enough to prove that these two SODs of Db(X1) have the
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Db(Z ′TLσ ∩Xσ)

Db(Z ′λ2 ∩XW12)
λ2

Db(Z ′λ2 ∩XW21)
λ2

Db(Z ′λ3 ∩XW11)

λ3

Db(Z ′λ1 ∩XW22)
λ1

X1

X0

γ1

γ2

q(KX1)

Figure 30. Two paths around the 2-dimensional face F superim-
posed on the secondary fan for the VGIT on F where Wij is the
j-th wall along γi

same minimal (in this face) factors with the same multiplicities. These minimal

factors have 3 possible forms:

(1) Db(X0)
(2) Db(Z ′λ ∩XW ) when the line ⟨W ⟩ contains two walls and Z ′λ ∩XW is a

minimal phase of the VGIT on Z ′λ.

(3) Db(Z ′TLσ ∩Xσ)

Lemma 10.7. The multiplicities (in the two SODs of Db(X1)) of the minimal

factors (1) and (2) agree.

Proof. By Theorem 4.21, there is precisely one copy of Db(X0) in each of these two

SODs so this factor is easy.

For any two walls W1, W2 in the secondary fan for F which lie on a line (for

example, the x-axis in Figure 30) with normal λ (pointing towards the maximal

chamber), we add µλ copies of Db(Z ′λ ∩ XW1) if we follow γ1 and µλ copies of

Db(Z ′λ∩XW2) if we follow γ2. One of these two categories is a minimal factor and,

by Theorem 4.21, the other has an SOD with one copy of this minimal factor in.

Therefore these factors have the same multiplicity in the two SODs of Db(X1). �

Finally we consider the minimal factor (3). When two walls lie on a line, only

the maximal phase (on that line) has factors of the form (3) in and so, for the

purpose of counting the multiplicity of these factors, we can ignore the walls in such

lines which correspond to minimal phases. Then we are only left with walls lying

on distinct lines and, by Theorem 4.21, such a wall W with primitive generator

lW ∈ (L∨σ ∩ ⟨W ⟩)∨ (such that lW (W ) > 0) contributes exactly µλW µ
λW
W copies of

Db(Z ′TLσ ∩Xσ) where the multiplicity µλW ∶= max(⟨−KZλ , lW ⟩,0).
However in general, if we define:

µγi ∶= ∑
Walls W along γi

µλW µ
λW
W
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β8

W2
β4, β5

W1

β6

β1, β2, β3

β7

β9

y

z

x

β1, β2, β3

β4, β5

β6

β7

X1

X0

γ1

γ2

λ2 λ2

−λ1

−λ1

Figure 31. Weights βi for i = 1,⋯,8 for Example 10.8 with the
two extra walls Wi and one extra ray β9 of the secondary fan shown
(L) and the secondary fan in the face corresponding to β9 (R)

µγ1 and µγ2 do not agree, as the following example shows.

Example 10.8. Take the following 8 weights in L∨ = Z3.

β1 = β2 = β3 = (0,0,1), β4 = β5 = (1,−2,0), β6 = (0,0,−1), β7 = (0,1,0), β8 = (−2,1,−1)

These are shown in Figure 31 (L). The secondary fan for this VGIT has a single

extra ray β9 = (1,0,0), which is the intersection of the two walls Wi in Figure 31

(L). Consider the 2-dimensional face corresponding to σ = β9 shown in Figure 31

(R). Then the projection q ∶ L∨ → L∨σ = Z2 sends (x, y, z) ↦ (y, z) and one checks

that q(−KX1) = (−2,1) and so the minimal and maximal phases are as shown.

We shall now calculate µγ1 and µγ2 explicitly in this example. We have that

µ−λ1 = 2 and µλ2 = 1. Noting that the walls corresponding to β6 and β7 don’t

contribute to µγ2 and µγ1 respectively as they correspond to minimal phases for

the VGIT on the wall, µγ1 = µ−λ1µ
−λ1

W = 2×2 = 4 and µγ2 = µλ2µ
λ2

W = 1×3 = 3. Thus

µγ1 ≠ µγ2 .

In this example, the discrepancy between µγ1 and µγ2 came from the fact that

the multiplicities µλ depend on all the weights but not all the weights (in this

example β8) affect the VGIT on the face F . However, in this example, Theorem

10.4 still holds because there is no contribution from the origin in Figure 31 (R) –

that is, Z ′TLσ ∩Xσ = ∅.

More generally, we therefore have two cases to consider:

(1) Xσ ∩ Z ′TLσ = ∅. In this case, µγ1 and µγ2 may differ but we don’t care as

far as Theorem 10.4 is concerned and so there is nothing left to check.

(2) Xσ ∩Z ′TLσ ≠ ∅.

Remark 10.9. In case (1), the “wall” given by σ in any of the wall VGITs in F is

not part of the secondary fan of these VGITs. We refer to this by saying that σ

is a “fake wall”. In Example 10.8, β9 was a fake wall. More generally, whenever

Rk(L∨) = 3 and so σ is a ray β of the secondary fan, β defines a fake wall precisely

when β has no weights on it.
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Remark 10.10. For any 2-dimensional face F of the secondary polytope such that

(1) holds, all the walls of the secondary fan for the VGIT on F must be lines. This

follows because if there was a wall W in this secondary fan which was a ray, then,

since Xσ ∩ Z ′TLσ = ∅, the phases of the VGIT on ⟨W ⟩ are the same and one of

them is empty.

So we are left with case (2). The basic observation is:

Lemma 10.11. If σ is not a fake wall – that is, Xσ ∩ Z ′TLσ ≠ ∅ – q(βi) lies on

a wall of the secondary fan for the VGIT on F for all weights βi which are not in

⟨σ⟩ .

Proof. By naturality of the semistable locus, Xσ∩Z ′TLσ corresponds to the phase of

the linear toric VGIT on Z ′TLσ whose chamber in ⟨σ⟩ is σ. Using the description of

the support of the secondary fan of a linear toric VGIT (see [14], Theorem 14.4.7),

Xσ ∩ Z ′TLσ ≠ ∅ implies that σ is contained in the cone generated by the weights

which lie in ⟨σ⟩. Let’s re-label these weights by β1, . . . , βn.

Now take a weight βi not lying in ⟨σ⟩ (so i > n) and consider q(βi). Let λ ∈ Lσ
be one of the primitive normal vectors to the line generated by q(βi). If q(βi) does

not lie on a wall in the secondary fan for F , then it lies in a chamber of this fan. We

let C be the maximal cone in Σ which corresponds to this chamber (so σ ⊂ C) and

XC denote the corresponding phase. Note that, by our choice of λ, Z ′λ ∩XC = ∅.

Now λ defines a hyperplane in L∨R, which we call ⟨W ⟩, on which the weights of the

VGIT on Z ′λ lie. Then Z ′λ ∩XC = ∅ implies that the open subset Int(C) ∩ ⟨W ⟩ ⊂
⟨W ⟩ is disjoint from the support of the secondary fan. But this is impossible

because, if we let σi be the cone (of maximal dimension) generated by β1, . . . , βn

and βi in ⟨W ⟩, then σi must meet Int(C) ∩ ⟨W ⟩ since both are full-dimensional

subsets of ⟨W ⟩ containing σ in their closure and lying on the same side of ⟨σ⟩. As

such, we have a contradiction and so q(βi) lies on a wall of the secondary fan for

the VGIT on F . �

We are now in a position to complete the proof of Theorem 10.4.

Proof of Theorem 10.4. The first claim was dealt with before the statement of the

theorem, so it only remains to show the second claim. Moreover, it suffices to prove

that the two SODs coming from the two paths around a chosen 2-dimensional face

F agree. We have also shown in Lemma 10.7 that the multiplicities of the minimal

factors of the form Db(X0) and coming from walls which are lines always agree.

Therefore we are left with the minimal factor Xσ ∩ Z ′TLσ which we may assume

is non-empty i.e. case (2). In this case, we need to show that µγ1 = µγ2 . For the

purposes of showing this, as we have remarked, whenever we have two walls W1

and W2 lying on a line with normal λ, only one of µλWi
will be non-zero and so we

can forget about the other side and assume that all walls lie on distinct lines. This

means that, for any wall W , µλWW = ∑i∣q(βi)∈W ∣q(βi)∣ and so, recalling that uW ∈ L∨
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is the primitive generator on the ray W :

uWµ
λW
W = ∑

i∣q(βi)∈W
uW ∣q(βi)∣ = ∑

i∣q(βi)∈W
q(βi)

Pick an orientation on L∨σ such that γ1 is positive with respect to this orientation.

It follows that γ2 is negative. We can find a unique primitive integral area form

ω ∈ Λ2Lσ such that, if (u1, u2) are positively oriented (assume u1 and u2 are

linearly independent) then ω(u1, u2) > 0. This area form gives us an identification

L∨ → L,u ↦ ω(u,−) and, by definition of the λW ∈ L occurring at walls W along

γ1, λW = ω(uW ,−). Similarly, for the λW coming from a wall W along γ2, λW =
ω(−uW ,−).

Then:

µγ1 − µγ2 = ⟨q(−KX1), ∑
Walls W
along γ1

λWµ
λW
W − ∑

Walls W
along γ2

λWµ
λW
W ⟩

= ω( ∑
All walls W

uWµ
λW
W , q(−KX1))

= ω( ∑
All walls W

∑
i∣q(βi)∈W

q(βi), q(−KX1))

= ω(q(−KX1), q(−KX1)) = 0

where the penultimate equality comes from Lemma 10.11. �

Remark 10.12. Given Theorem 10.4, it is natural to ask if there is a more geometric

interpretation of which minimal factors show up and their multiplicities nΓ.

10.2. Intersection multiplicities: a conjecture. We return to the situation at

the start of this section of crossing a single wall W between two phases of a Calabi–

Yau VGIT. We want to apply the above technology to X1 = Z ′
λ because we would

like to define fractional windows and these come from SODs of Db(Z ′
λ).

Definition 10.13. nΓ,W is the number nΓ of pieces coming from ZΓ in the SOD

from Theorem 10.4 of the phase X1 = Z ′
λ corresponding to W .

Remark 10.14. In this setting, the only faces Γ for which nΓ,W is non-zero are the

ones for which the linear subspace (L′Γ)∨R spanned by the complementary weights

(see §3.5) is contained in ⟨W ⟩. This is because the Higgs VGITs occurring in the

SOD of Db(X1) from the previous section are defined by a subset of the weights of

the VGIT on Z ′λ.

Unlike in the general case however, here we know how to define the discriminant

(see Definition 3.2) and understand that its components correspond to minimal

phases – that is, Higgs phases. Moreover, in light of the Conjecture of Aspinwall,

Plesser and Wang (see Conjecture B in §2) and the fact that our SOD of Db(Z ′
λ)

gives rise to nΓ,W different spherical functors with source category Db(ZΓ) (whose

twists are fractional window shifts), it seems very natural to conjecture:
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Conjecture 10.15. The number nΓ,W agrees with the intersection multiplicity

mΓ,W of ∇Γ with the curve Z(W ).

We don’t know how to prove this in general as we usually don’t have a method

to understand mΓ,W . However, as evidence for this conjecture, we can prove some

special cases.

Lemma 10.16. If Γ is such that ⟨W ⟩ doesn’t contain (L′Γ)∨, then mΓ,W = 0. By

Remark 10.14, for such Γ, nΓ,W = 0 also. As such, this agrees with Conjecture

10.15.

Proof. As in Remark 3.50, ∇Γ is the pullback of ∇A∩Γ under the map (of secondary

stacks) induced by p ∶ L∨ → L∨Γ where ∇A∩Γ is the principal component of the VGIT

on Γ (whose weights lie in L∨Γ by definition). As such mΓ,W = ⟨∇A∩Γ, p(Z(W ))⟩.
Under p, the curve Z(W ) gets sent to either a toric fixed point or a toric curve

and the latter happens precisely when p(W ) is a codimension 1 cone in (L∨Γ)R –

that is, when ⟨W ⟩ contains (L′Γ)∨ =∶ kerp. As ∇A∩Γ always avoids the torus fixed

points (see [20], Ch. 6, §1), for any wall such that ⟨W ⟩ doesn’t contain (L′Γ)∨,

Z(W ) is disjoint from ∇Γ. �

If we push this a little further we get,

Proposition 10.17. If Γ is a circuit, then mΓ,W = nΓ,W . This number is 1 pre-

cisely when (L′Γ)∨R = ⟨W ⟩ and 0 otherwise.

Proof. By Remark 10.14 and the fact that (L′Γ)∨R is a hyperplane when Γ is a circuit,

nΓ,W ≠ 0 precisely when (L′Γ)∨R = ⟨W ⟩ – that is, when the VGIT on W is the Higgs

VGIT for Γ. Moreover, if nΓ,W ≠ 0, then nΓ,W = 1 since ZΓ is a phase in this VGIT

and so this follows from Theorem 4.21.

On the other hand, from the proof of Lemma 10.16, we see that p maps Z(W ) to

a toric curve precisely when ⟨W ⟩ = (L′Γ)∨R (as Γ is circuit, so (L′Γ)∨R is a hyperplane).

Moreover, because L∨Γ is rank 1, such a toric curve must be the whole secondary

stack and hence must meet ∇A∩Γ. Thus we see that mΓ,W ≠ 0 precisely when

(L′Γ)∨R = ⟨W ⟩ and that, if mΓ,W ≠ 0, mΓ,W = 1 since ∇A∩Γ is always reduced and p

maps Z(W ) isomorphically onto its image. �

Proposition 10.18. If Γ is such that Rk(LΓ) = 2, then mΓ,W = nΓ,W

Proof. By Lemma 10.16, we need only consider Γ such that (L′Γ)∨R ⊂ ⟨W ⟩. Consider

as usual the map of secondary stacks induced by p ∶ L∨ → L∨Γ. For such Γ, p sends

W to a codimension 1 cone σ in the secondary fan for Γ, so Z(W ) gets mapped

isomorphically to a boundary curve in the secondary stack for Γ. By Lemma 6.3,

we have that:

mΓ,W = ⟨∇A∩Γ, p(Z(W ))⟩ = max( ∑
i∣p(βi)∈⟨σ⟩

l(p(βi)),0)

(where l ∈ LΓ obeys l(uσ) = 1) and so mΓ,W = max(∑i∣βi∈⟨W ⟩ l′(βi),0), where

l′ = p∗(l) ∈ L.
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W ′

x2

x3
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Figure 32. The weights in the setup of Example 10.21

On the other hand, (L′Γ)∨R is a hyperplane in ⟨W ⟩ and so nΓ,W ≠ 0 precisely when

KZ′
λ

lies on the opposite side of (L′Γ)∨R to W – that is, when ∑i∣βi∈⟨W ⟩ l′(βi) > 0.

When nΓ,W ≠ 0, we only cross this wall (L′Γ)∨R once and, by Theorem 10.4, we can

assume we pass through the Higgs chamber in (L′Γ)∨R. Then Theorem 4.21 tells

us that we get nΓ,W = l̂(−KZ′
λ
) copies of Db(ZΓ), where l̂ ∈ (⟨W ⟩ ∩ L∨)∨ is the

primitive normal to (L′Γ)∨R in ⟨W ⟩ pointing towards W . But l̂ = l′∣⟨W ⟩ and so this

quantity equals ∑i∣βi∈⟨W ⟩ l′(βi). �

Corollary 10.19. For a 2-dimensional FIPS, Conjecture 10.15 holds.

Proof. In a 2-dimensional FIPS (see Lemma 6.4) only ∇pr and ∇W can possibly

meet Z(W ) and ∇W = ∇Γ for a circuit Γ. Using Propositions 10.17 and 10.18, we

have therefore covered all the possibilities. �

Remark 10.20. As these results show, it becomes harder to compute mΓ,W as Γ

has more relations on it. In particular, of all the faces Γ, we should expect m∆,W

to be the hardest to understand.

In the above results, we have crucially used Lemma 6.3 which relies on the fact

that Horn uniformisation gives a morphism in dimension at most 2. In the case of a

3-dimensional FIPS, to which we now turn, only the multiplicities for Γ = ∆ remain

to be understood. However in this case, Horn uniformisation is generally only

a rational map and this causes birational complications when computing mΓ,W .

Nonetheless in the simplest non-trivial 3-dimensional case, Horn uniformisation is

still a morphism on the region we care about and so we can still show Conjecture

10.15 holds.

Example 10.21. Suppose that L = Z3
x1,x2,x3

and that the weights are chosen such

that the representation is Calabi–Yau and the only weights that lie on ⟨W ⟩ =
{x3 = 0} = Z2 lie on the 2 coordinate axes. Moreover we assume that βxj =
∑i∣βi on xj-axis βi has positive xj coordinate and that gcd(∣βi∣ ∣ βi on xj-axis) = 1

(for j = 1,2). Then m∆,W = n∆,W and Conjecture 10.15 holds.

This situation is pictured in Figure 32. Note that there are at most 4 chambers

for the VGIT on ⟨W ⟩ and that, since βxj has positive xj-coordinate for j = 1,2, only
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the chamber W in this VGIT given by the positive quadrant (which faces towards

us in Figure 32) has n∆,W ≠ 0. Moreover, in this case, n∆,W = ∣βx1 ∣∣βx2 ∣.
We now compute the intersection multiplicity of ∇pr with Z(W ). For this, we

use Horn uniformisation which is given by (see (4) in §3.6)

H ∶ P(LC)⇢ TL∨ = (C∗)3
x1,x2,x3

, [λ1, λ2, λ3]↦ (λ∣βx1
∣

1 ×Λ1, λ
∣βx2

∣
2 ×Λ2,Λ3)

where Λi(λ1, λ2, λ3) are the factors in Horn uniformisation corresponding to weights

not lying on ⟨W ⟩ – that is, with non-zero λ3-coordinate.

As in §5.2, a wall W and a choice of βW gives a projection π′ ∶ UW → B′ such

that π′−1(0) = Z(W ) ∩UW . Then UW = C2
x1,x2

×C∗
x3

and, if we take βW = (0,0,1),
π′ is just the projection to the first 2 coordinates. Then B′ = C2

x1,x2
and π′ ○H ∶

[λ1, λ2, λ3]↦ (λ∣βx1
∣

1 ×Λ1, λ
∣βx2

∣
2 ×Λ2).

Consider those elements in P(LC) mapping to Z(W ) under H. As ∇pr = Im(H)
avoids the torus fixed points, they must have Λ3 ≠ 0. Since all factors in Λ3 (of the

form (λ1βj1+λ2βj2+λ3βj3)βj3 for βj not lying in ⟨W ⟩) have non-zero exponent, the

only possibility is if (λ1βj1+λ2βj2+λ3βj3) ≠ 0 for all such βj . But since Λi has the

same factors (with different exponents) for i = 1,2 we conclude that Λi ≠ 0. As such

H actually defines a morphism on H−1(UW ) and m∆,W = Len(H∗(Z(W )∩UW )) =
Len((π′ ○H)∗(0)) = Len({λ∣βx1

∣
1 = 0, λ

∣βx2
∣

2 = 0}) = ∣βx1 ∣∣βx2 ∣ as desired.

One can also check that m∆,W ′ = 0 for the other chambers W ′. As an example,

take W ′ to be the wall shown in Figure 32. Then, if we compactify B′ to P1 ×
P1, π′ ○H ∶ [λ1, λ2, λ3] ↦ ([λ∣βx1

∣
1 × Λ1 ∶ 1], [λ∣βx2

∣
2 × Λ2 ∶ 1]) and Z(W ′) ∩ UW ′ =

π′∗([0,1], [1,0]). As above, the fact that Λ3 ≠ 0 means Λi ≠ 0 for i = 1,2 and so H

is still a morphism on H−1(UW ′). Moreover, m∆,W ′ = Len(H∗(Z(W ′) ∩ UW ′)) =
Len((π′ ○H)∗(0)) = Len(∅) = 0 as claimed.

Remark 10.22. We can prove the same statement in a few more complicated cases

when Rk(L) = 3. In all these examples, it seems natural to try to compactify the

image of the projection using the secondary fan of the VGIT on Z ′λ and then

resolve the indeterminacy in H using iterated blow-ups over the origin. Given the

iterative nature of n∆,W it would seem natural to try to relate these blow-ups to

walls in ⟨W ⟩ but we don’t know how to do this as, until H is resolved, we can’t use

it to compute intersection multiplicities.

Lastly, we observe that Conjecture 10.15 also holds for all wall-crossings in the

Triangle VGIT (see §9) which has a 3-dimensional FIPS and is not of the form in

Example 10.21.

Example 10.23. For every wall W in D, Z(W ) meets a unique component of

the discriminant and does so with multiplicity 1. For any wall in F8 (Wi8 in the

notation from §9.2.2) , Z(W ) meets ∇i for a unique i, so mi,W = 1 for this i and 0

for all other faces. The corresponding window shifts (see Remark 9.10) are family

spherical twists over a base Z ′
λ ≅ C. Moreover we check that the corresponding
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VGIT on Z ′λ is given by:

Q ∶ Z3 → L∨ ∩ ⟨W ⟩ ≅ Z2,Q =
⎛
⎝

1 −1 −1

0 1 −1

⎞
⎠

Hence this VGIT has 3 phases and KZ′
λ
= (1,0). As such, any phase corresponding

to one of the two chambers containing KZ′
λ

is a Higgs phase and indeed Z ′
λ is one

of these, hence nΓ,W = 1 for the face Γ such that (L′Γ)∨ = L∨ ∩ ⟨W ⟩ and nΓ,W = 0

for all others.

For the walls W16, W13 and W15 (in the notation from §9.2.2) in the face F1,

Z(W ) meets ∇pr so mi,W = 0 for all i and m∆,W = 1. The corresponding window

shifts (see Remark 9.10) are spherical twists about a compact curve - indeed one

sees that Z ′
λ is a point – and hence Z ′

λ is the Higgs phase Z∆, as expected.

For the 3 walls W24,W45,W25 not in D, Z(W ) meets ∇pr transversely and one

of the components ∇i. Hence m∆,W = 1 = mi,W and mj,W = 0 for the other two

j. These walls are chambers within L∨ ∩ ⟨W ⟩ ≅ Z2 as above and correspond to

the single non-minimal phase Z ′
λ ≅ [C /Z2]. The SOD coming from wall-crossing

is Db([C /Z2]) = ⟨Db(C),Db(pt)⟩ and so we get n∆,W = 1 and one copy of another

Higgs phase. One can check that it is indeed the correct Higgs phase.
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